OCR Maths FP2

Mark Scheme Pack

2006-2014

$$
\text { 1(i) Use standard } \begin{aligned}
\ln (1+3 x) & =3 x-\frac{(3 x)^{2}}{2}+\frac{(3 x)^{3}}{3} \\
& =3 x-9 x^{2} / 2+9 x^{3}
\end{aligned}
$$

(ii) Produce $\left(1+x+x^{2} / 2\right)$

Get $3 x-3 x^{2} / 2+6 x^{3}$

M1 Allowe.g. $3 x^{2}, 2$! etc.
M1 Attempt to simplify $(3 x)^{2}$ etc.
A1 cao
B1
M1 Mult. 2 reasonable attempts, each of 3 terms (non-zero)
AIV From their series
SC MI Reasonable attempt at diff. and replace $x=0$ (2 correct)
Mi $\sqrt{ }$ Put their values into correct Maclaurin expansion
Al cao
(Applies to either/both parts)
B1 Or equivalent
Bl Correct from their $f(x)$
M1 Clear evidence of $\mathrm{N}-\mathrm{R}$ on their f. f'
$\mathrm{Al} \sqrt{ } \mathrm{At}$ least one to $4 \mathrm{~d} . \mathrm{p}$.
A1 cao to 3 d.p.
B1
M1 $\sqrt{ }$ Equate to their P.F. (e.g. if $\mathrm{B}=0$ or $\mathrm{C}=0$ used)
Use $x=0$ or equiv. for A (or equate coeff.etc.)
Correctly find one of B, C
Get $A=3, B=-3, C=1$

(ii)(a)Converges to $x=\alpha$
(b)Diverges (does not give either root)

5 (i) Give $x=-2$
Attempt to divide out
Get $y=x+1$
(ii) Write as quad. $x^{2}+x(3-y)+(3-2 y)=0$

Use for real $x, b^{2}-4 \mathrm{ac} \geq 0$
Produce quad. inequality in y Attempt to solve quad. inequality Get A.G. clearly e.g. graph

M1 $\sqrt{ }$ Include cover-up
A1
Al
B1 Line from x_{1} to curve
Bl Then to line
B1 Clear explanation; allow use of step/staircase

B1, B1

B1
B1
M1 Giving $y \neq x+k$; allow $k=0$ here
Al Must be $=$
M1 SC Differentiate M1
M1 Solve $d y / d x=0 \mathrm{M} 1$
M1 Get $2 x, y$ values correct Al
M1 Attempt at max/min M1
A1 Justify, e.g. graph, constraints on $y \mathrm{~A} 1$

6 (i) Use parts to $\left(-\mathrm{e}^{-x} \cdot x^{n}-\int-\mathrm{e}^{-x} \cdot n x^{n-1} \mathrm{~d} x\right)$
Use limits to get e^{-1}
Tidy correctly to A.G.
(ii) $\begin{aligned} \text { Use } I_{3} & =3 I_{2}-\mathrm{e}^{-1} \\ I_{2} & =2 I_{1}-\mathrm{e}^{-1} \\ I_{1} & =I_{0}-\mathrm{e}^{-1}\end{aligned}$

Work out $I_{0}=1-\mathrm{e}^{-1}$ or $I_{1}=1-2 \mathrm{e}^{-1}$
Get $6-16 \mathrm{e}^{-1}$
7 (i) Area under graph $=\int \sqrt{ } x \mathrm{~d} x$

M1 Reasonable attempt e.g. $+\mathrm{e}^{-x}$
Al cao
B1 Allow \pm
A1
B1 One such seen

M1,Al
Al
B1 Explain RHS (limits need not be specified)
$>$ Sum of areas of rectangles from 1 to $N+1 \quad \mathrm{~B} 1$
Area of each rect. $=$ Width \times Height $=1 \times \sqrt{x} \quad$ B1
(ii) Similarly, area under curve from 0 to $N \quad$ B1
$<$ sum of areas of rect. from 0 to $N \quad$ B1
Clear explanation of A.G.
B1
(iii) Integrate $x^{0.5}$ and use 2 different sets of limits M1,M1

Get area between ${ }^{2} / 3\left((N+1)^{1.5}-1\right)$ and ${ }_{2} / 3 N^{1.5}$

8 (i) Max. $r=2$ at $\theta=0$ and π
(ii) Solve $r=0$ for θ, giving $\theta=1 / 2 \pi$ and $3 / 2 \pi$
(iii) Use correct formula with correct r

Expand r
Get $\int \mathrm{A}+\mathrm{B} \cos 2 \theta+\mathrm{C} \cos 4 \theta \mathrm{~d} \theta$ Integrate their expression correctly Get $3 \pi / 8$
(iv) Express $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ or similar Use $\cos \theta=x / r$ and $/$ or $\sin \theta=y / r$.
Simplify to $\left(x^{2}+y^{2}\right)^{1.5}=2 x^{2}$ or similar
9
(i) Correct def ${ }^{n}$ of $\cosh x$ and $\sinh x$

Expand 2.1/2 $\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right) \cdot 1 / 2\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$
Clearly get $1 / 2\left(e^{2 x}-e^{-2 x}\right)$ to A.G.
(ii) Attempt to diff. and solve $\mathrm{d} y / \mathrm{d} x=0$

Use (ii) to get $\mathrm{A} \cosh x(\mathrm{~B} \sinh x+\mathrm{C})=0$
Clearly see $\cosh x>0$ or similar for one useable factor only
Attempt to solve $\sinh x=-\mathrm{C} / \mathrm{B}$
Get $x=\ln ((3+\sqrt{13}) / 2)$
Justify one answer only for $\sinh x=-C / B$
Accurate test for MINIMUM

A1

$\mathrm{B} 1, \mathrm{~B} 1$ Two θ needed (rads only); ignore θ out of range

M1,Al Two θ needed (rads only); ignore θ out of range

M1
M1
M1 $\mathrm{C} \neq 0$
M1V
Al cao
M1
M1
M1,A1
B1,B1
M1 Reasonable attempt
A1
M1 Reasonable attempt
M1
B1
Ml Quote or via e^{-x} correctly
A1
B1
B1 First or second diff test with numeric evidence
B1 Correct value(s) for min.

1 Correct expansion of $\sin x$
Multiply their expansion by $(1+x)$
Obtain $x+x^{2}-x^{3} / 6$

2 (i) Get $\sec ^{2} y \frac{d y}{d x}=1$ or equivalent
Clearly use $1+\tan ^{2} y=\sec ^{2} y$
Clearly arrive at A.G.
(ii) Reasonable attempt to diff. to $\frac{-2 x}{\left(1+x^{2}\right)^{2}}$

Substitute their expressions into D.E.
Clearly arrive at A.G.

3 (i) State $y=0$ (or seen if working given)
(ii) Write as quad. in x^{2}

Use for real $x, b^{2}-4 a c \geq 0$
Produce quad. inequality in y
Attempt to solve inequality Justify A.G.

4 (i) Correct definition of $\cosh x$ or $\cosh 2 x$ Attempt to sub. in RHS and simplify Clearly produce A.G.
(ii) Write as quadratic in $\cosh x$

Solve their quadratic accurately
Justify one answer only
Give $\ln (4+\sqrt{ } 15)$

5 (i) Get $(t+1 / 2)^{2}+3 / 4$
(ii) Derive or quote $\mathrm{d} x=\frac{2}{1+t^{2}} \mathrm{dt}$

Derive or quote $\sin x=2 t /\left(1+t^{2}\right)$
Attempt to replace all x and $\mathrm{d} x$
Get integral of form $A /\left(B t^{2}+C t+D\right)$ Use complete square form as $\tan ^{-1}(\mathrm{f}(\mathrm{t}))$ Get A.G.

B1 Quote or derive $x-1 / 6 x^{3}$
M1 Ignore extra terms
A1 $\sqrt{ }$ On their $\sin x$; ignore extra terms; allow 3 !
SC Attempt product rule M1 Attempt $\mathrm{f}(0), \mathrm{f}^{\prime}(0), \mathrm{f}^{\prime \prime}(0) . .$.
(at least 3) M1
Use Maclaurin accurately cao A1
M1
M1 May be implied
A1
M1 Use of chain/quotient rule
M1 Or attempt to derive diff. equ ${ }^{\text {n }}$.
A1
SC Attempt diff. of $\left(1+x^{2}\right) \mathrm{d} y=1 \mathrm{M} 1, \mathrm{~A} 1$
$d x$
Clearly arrive at A.G. B1
B1 Must be = ; accept x-axis; ignore any others

M1 $\left(x^{2} y-x+(3 y-1)=0\right)$
M1 Allow > ; or < for no real x
M1 $1 \geq 12 y^{2}-4 y ; 12 y^{2}-4 y-1 \leq 0$
M1 Factorise/ quadratic formula
A1 e.g. diagram / table of values of y
SC Attempt diff. by product/quotient M1 Solve dy/d $x=0$ for two real $x \quad$ M1 Get both $(-3,-1 / 6)$ and ($1, \frac{1}{2}$) A1 Clearly prove min./max. A1 Justify fully the inequality e.g. detailed graph

B1

M1 or LHS if used
A1
M1 $\left(2 \cosh ^{2} x-7 \cosh x-4=0\right)$
A1 $\sqrt{ }$ Factorise/quadratic formula
B1 State cosh $x \geq 1 /$ graph; allow ≥ 0
A1 cao; any one of $\pm \ln (4 \pm \sqrt{ } 15)$ or decimal equivalent of $\ln ()$

B1 cao
B1

B1

M1
A1 $\sqrt{ }$ From their expressions, $\mathrm{C} \neq 0$
M1 From formulae book or substitution
A1

6 (i) Attempt to sum areas of rectangles Use G.P. on $h\left(1+3^{h}+3^{2 h}+\ldots+3^{(n-1) h}\right)$

Simplify to A.G.
(ii) Attempt to find sum areas of different rect. Use G.P. on $h\left(3^{h}+3^{2 h}+\ldots+3^{n h}\right)$

Simplify to A.G.
(iii) Get 1.8194(8), 1.8214(8) correct

7 (i) Attempt to solve $r=0, \tan \theta=-\sqrt{ } 3$ Get $\theta=-\frac{1}{3}$ m only
(ii) $r=\sqrt{3}+1$ when $\theta=1 / 4 \pi$
(iii)

M1 $\left(h .3^{h}+h .3^{2 h}+\ldots+h .3^{(n-1) h}\right)$
M1 All terms not required, but last term needed (or 3^{1-h}); or specify a, r and n for a G.P.
A1 Clearly use $n h=1$
M1 Different from (i)
M1 All terms not required, but last term needed; G.P. specified as in (i), or deduced from (i)
A1

B1,B1 Allow $1.81 \leq A \leq 1.83$

M1 Allow $\pm \sqrt{ } 3$
A1 Allow - 60°

B1,B1 AEF for $r, 45^{\circ}$ for θ
B1 Correct r at correct end-values of θ; Ignore extra θ used

B1 Correct shape with r not decreasing

M1 r^{2} may be implied
B1
M1 Must be 3 different terms leading to any 2 of $a \theta+b \ln (\sec \theta / \cos \theta)+c \tan \theta$
A1 Condone answer $x 2$ if $1 / 2$ seen elsewhere
A1 cao; AEF
M1
M1
A1 Clearly gain A.G.
B1 Or $\pm 2 \operatorname{sech}^{2} x-1$

M1
M1 To get an x_{2}
A1
A1 cao
$B 1 \sqrt{ }-0.083(8),-0.0012$ (allow \pm if both of same sign); e_{1} from 0.083 to 0.085

Use $e_{2} \approx k e_{1}{ }^{2}$ and $e_{3} \approx k e_{2}{ }^{2}$
Get $e_{3} \approx e_{2}{ }^{3} / e_{1}^{2}=-0.0000002$ (or 3)

9 (i) Rewrite as quad. in e^{y}
Solve to $\mathrm{e}^{y}=\left(x \pm \sqrt{ }\left(x^{2}+1\right)\right)$
Justify one solution only
(ii) Attempt parts on $\sinh x \cdot \sinh ^{n-1} x$

Get correct answer
Justify $\sqrt{ } 2$ by $\sqrt{ }\left(1+\sinh ^{2} x\right)$ for $\cosh x$ when limits inserted
Replace $\cosh ^{2}=1+\sinh ^{2}$; tidy at this stage Produce I_{n-2}
Gain A.G. clearly
(iii) Attempt $4 I_{4}=\sqrt{ } 2-3 I_{2}, 2 I_{2}=\sqrt{ } 2-I_{0}$ Work out $I_{0}=\sinh ^{-1} 1=\ln (1+\sqrt{ } 2)=\alpha$ Sub. back completely for I_{4} Get ${ }^{1} / 8(3 \ln (1+\sqrt{ } 2)-\sqrt{ } 2)$

M1
$\mathrm{A} 1 \sqrt{ } \pm$ if same sign as B1 $\sqrt{ }$
SC B1 only for $x_{4}-x_{3}$

M1 Any form
A1 Allow $y=\ln (\quad)$
B1 $x-\sqrt{ }\left(x^{2}+1\right)<0$ for all real x
SC Use $C^{2}-S^{2}=1$ for $C= \pm \sqrt{ }\left(1+x^{2}\right) \quad M 1$
Use/state $\cosh y+\sinh y=\mathrm{e}^{y} \quad$ A1
Justify one solution only B1
M1
A1 ($\left.\cosh x \cdot \sinh ^{n-1} x-\int \cosh ^{2} x \cdot(n-1) \sinh ^{n-2} x d x\right)$
B1 Must be clear
M1
A1
A1
M1 Clear attempt at iteration (one at least seen)
B1 Allow I_{2}
M1
A1 AEEF

$$
\begin{aligned}
1(\mathrm{i}) \mathrm{f}(\mathrm{O}) & =\operatorname{In} 3 \mathrm{f} \\
\mathrm{f}^{\prime}(0) & =1 / 3 \\
\mathrm{f}^{\prime}(\mathrm{O}) & =-1 / 9 A . G .
\end{aligned}
$$

(ii) Reasonable attempt at Maclaurin

$$
f(x)=\ln 3+1 / 3 x-1 / 18 x^{2}
$$

Bl

Bl
B1 Clearly derived
Ml Form $\operatorname{In} 3+a x+b x^{2}$, with a, b
related to f " f ,
A/ $\sqrt{ } J$ On their values off'and f "
SR Use $\operatorname{In}(3+x)=\operatorname{In} 3+\operatorname{In}(1+1 / 3$
x) Ml Use Formulae Book to get

$$
\begin{aligned}
& \operatorname{In} 3+Y 3 X-Y 2(V J X) 2= \\
& \text { In3 }+Y 3 X-1 / \lg X 2
\end{aligned}
$$

B1

B1
SR Use $x=\sqrt{ } J\left(\tan ^{-1} x\right)$ and compare x to
$\sqrt{ }\left(\tan ^{-1} \mathrm{x}\right)$ for $x=0.8,0.9 \quad$ B 1
Explain "change in sign" B 1
B1 Get $2 x-\operatorname{II}\left(1+x^{2}\right)$
Ml $0.8-f(0.8) / f(0.8)$
MiV
Al 3d.p. - accept answer which rounds
Ml Or numeric equivalent
Al At least 3 d.p. correct
Bl AG. Inequality required
B1 Inequality or diagram required
Ml Or numeric evidence
Al cao; or answer which rounds down
BI Correct shape for $\sinh x$
B1 Correct shape for $\operatorname{cosech} x$
B1 Obvious point $(d y / d x \neq 0)$ /asymptotes clear

B1 May be implied
B1 Must be clear; allow 2/(eX-e-X) as mimimum simplification
M1 Or equivalent, all x eliminated and not $d x=d u$
Al
A1 $\sqrt{ }$ Use formulae book, PT, or atanh h^{-1} u
Al No need for c

5 (i) Reasonable attempt at parts Get $x n \sin x-\int \sin x . n x^{n-1} d x$
Attempt parts again Accurately Clearly derive AG.
(ii) Get $I_{4}=(1 / 2 \pi)^{4}-12 I_{2}$ or $I_{2}=(1 / 2 \pi)^{2}-2 I_{0}$ Show clearly $I_{0}=1$
Replace their values in relation Get $I_{4}=1 / 16 \pi^{4}-3 \pi^{2}+24$

M1 Involving second integral Al
M1
Al
A1 Indicate $(1 / 2 \pi)^{n}$ and 0 from limits

B1
B1 May use I_{2}
M1
A1 cao

B1, B1, B1 Must be =; no working needed

B1 Two correct labelled asymptotes $11 O x$ and approaches

B1 Two correct labelled asymptotes $11 O y$ and approaches

B1 Crosses at $\left(\frac{3}{2} a, 0\right)$ (and $(0,0)$ - may be implied

B1 90° where it crosses $O x$; smoothly
B1 Symmetry in $O x$

M1 Allow $(A t+B) / t^{2}$; justify $B / t^{2}+D /\left(l+t^{2}\right)$ if only used

M1 $\sqrt{ }$
M1 Lead to at least two constant values Al

SR Other methods leading to correct PF can earn 4 marks; 2 M marks for reasonable method going wrong
Bl
B1
M1 Allow $k\left(l-t^{2}\right) /\left(\left(t^{2}\left(l+t^{2}\right)\right.\right.$ or equivalent $\mathrm{Al} \sqrt{ }$ From their k
Al

B1 Allow $\left(e^{2 Y}-1\right) /\left(e^{2 y}+1\right)$ or if x used

M1 Multiply by e^{γ} and tidy
M1
Al

M1 SR Use hyp def ${ }^{n}$ to get quad. in e^{x} M I
Al Solve $e^{2 x}=7$ for x to $1 / 21$ n $7 \quad \mathrm{Al}$
Bl One used correctly
M1 Or $1 n\left({ }^{A} I_{B}\right)=0$
Al

9 (i)

(ii) U se correct formula with correct r
$f \sec ^{2} \mathrm{x} d x=\tan x$ used
Quote $f 2 \sec x \tan x d x=2 \sec x$
Replace $\tan ^{2} x$ by $\sec ^{2} x-1$ to integrate
Reasonable attempt to integrate 3 terms And to use limits correctly
Get $\sqrt{3}+1-{ }^{1 / 6} \pi$
(iii) Use $x=r \cos \theta, y=r \sin \theta, r=\left(x^{2}+y^{2}\right)^{1 / 2}$

Reasonable attempt to eliminate r, θ
Get $y=(x-1) \sqrt{ }\left(x^{2}+y^{2}\right)$

B1 Shape for correct θ; ignore other θ
Used; start at $(r, 0)$
B1 $\theta=0, r=1$ and increasing r

B1
B1
B1 Or sub. correctly M1

M1
Al Exact only

M1
M1
A1 Or equivalent

1 Correct formula with correct r
Rewrite as $a+b \cos 6 \theta$
Integrate their expression correctly
Get $1 / 3 \pi$

2 (i) Expand to $\sin 2 x \cos ^{1} / 4 \pi+\cos 2 x \sin 1 / 4 \pi$
Clearly replace $\cos ^{1} 1 / 4 \pi, \sin ^{11} / 4 \pi$ to A.G.
(ii) Attempt to expand $\cos 2 x$

Attempt to expand $\sin 2 x$
Get $1 / 2 \sqrt{ } 2\left(1+2 x-2 x^{2}-4 x^{3} / 3\right)$

M1 Allow $r^{2}=2 \sin ^{2} 3 \theta$
M1 $a, b \neq 0$
A1 $\sqrt{ }$ From $a+b \cos 6 \theta$
A1 cao

B1
B1
M1 Allow $1-2 x^{2} / 2$
M1 Allow $2 x-2 x^{3} / 3$
A1 Four correct unsimplified terms in any order; allow bracket; AEEF
SR Reasonable attempt at $f^{n}(0)$ for $n=0$ to 3 M1
Attempt to replace their values in Maclaurin M1
Get correct answer only A1
M1 Allow $C=0$ here
M1 $\sqrt{ }$ May imply above line; on their P.F.
M1 Must lead to at least 3 coeff.; allow cover-up method for A
A1 cao from correct method
$B 1 \sqrt{ }$ On their A
B1 $\sqrt{ }$ On their C; condone no constant; ignore any $B \neq 0$

M1 Two terms seen
M1 Allow +
A1
A1 cao
B1 On any $k \sqrt{ }\left(1-x^{2}\right)$
M1 In any reasonable integral
A1
SR Reasonable sub.
B1
Replace for new variable and attempt to integrate (ignore limits) M1
Clearly get $1 / 2 \pi \quad$ A1

5 (i) Attempt at parts on $\int 1(\ln x)^{n} \mathrm{~d} x$ Get $\mathrm{x}(\ln \mathrm{x})^{\mathrm{n}}-\int^{\mathrm{n}}(\ln x)^{\mathrm{n}-1} \mathrm{dx}$
Put in limits correctly in line above Clearly get A.G.
(ii) Attempt I_{3} to I_{2} as $I_{3}=\mathrm{e}-3 I_{2}$

Continue sequence in terms of In
Attempt I_{0} or I_{1}
Get 6 - 2e
6 (i) Area under graph $\left(=\int 1 / x^{2} \mathrm{~d} x, 1\right.$ to $\left.n+1\right)$
$<$ Sum of rectangles (from 1 to n)
Area of each rectangle $=$ Width x Height $=1 \times 1 / x^{2}$
(ii) Indication of new set of rectangles Similarly, area under graph from 1 to n $>$ sum of areas of rectangles from 2 to n Clear explanation of A.G.
(iii) Show complete integrations of RHS, using correct, different limits
Correct answer, using limits, to one integral
Add 1 to their second integral to get complete series
Clearly arrive at A.G.
M1
A1
(iv) Get one limit

Get both 1 and 2
A1 M1

M1

B1

A1

M1 Two terms seen

A1 $\ln \mathrm{e}=1, \ln 1=0$ seen or implied

A1 $I_{2}=\mathrm{e}-2 I_{1}$ and $/$ or $I_{1}=\mathrm{e}-I_{0}$
M1 $\left(I_{0}=\mathrm{e}-1, I_{1}=1\right)$
A1 cao

B1 Sum (total) seen or implied eg diagram; accept areas (of rectangles)

B1 Some evidence of area worked out seen or implied

B1 Sum (total) seen or implied
B1 Diagram; use of left-shift of previous areas

M1 Reasonable attempt at $\int x^{-}{ }^{2} d x$

B1 Quotable
B1 Quotable; limits only required

7 (i) Use correct definition of \cosh or $\sinh x$
Attempt to mult. their cosh/sinh
Correctly mult. out and tidy
Clearly arrive at A.G.
(ii) Get $\cosh (x-y)=1$

Get or imply $(x-y)=0$ to A.G.
(iii) Use $\cosh ^{2} x=9$ or $\sinh ^{2} x=8$

Attempt to solve $\cosh x=3$ (not -3)
or $\sinh x= \pm \sqrt{8}$ (allow $+\sqrt{8}$ or $-\sqrt{8}$ only)
Get at least one x solution correct
Get both solutions correct, x and y

8
(i) $x_{2}=0.1890$
$x_{3}=0.2087$
$x_{4}=0.2050$
$x_{5}=0.2057$
$x_{6}=0.2055$
$x_{7}\left(=x_{8}\right)=0.2056$ (to x_{7} minimum)
$\alpha=0.2056$
(ii) Attempt to diff. $\mathrm{f}(x)$

Use α to show $\mathrm{f}^{\prime}(\alpha) \neq 0$
(iii) $\delta_{3}=-0.0037$ (allow -0.004)
(iv) Develop from $\delta_{10}=\mathrm{f}^{\prime}(\alpha) \delta_{9}$ etc. to get δ_{i} or quote $\delta_{10}=\delta_{3} \mathrm{f}^{\prime}(\alpha)^{7}$
Use their δ_{i} and $\mathrm{f}^{\prime}(\alpha)$
Get 0.000000028

B1 Seen anywhere in (i)
M1
A1 $\sqrt{ }$
A1 Accept e^{x-y} and e^{y-x}
M1
A1
B1
M1 $x=\ln (3+\sqrt{ } 8)$ from formulae book or from basic cosh definition
A1
A1 $x, y=\ln (3 \pm 2 \sqrt{ } 2)$; AEEF
SR Attempt tanh $=\sinh /$ cosh \quad B1
Get $\tanh x= \pm \sqrt{8 / 3}(+$ or -) \quad M1
Get at least one sol. correct A1
Get both solutions correct A1
SR Use exponential definition B1
Get quadratic in e^{x} or $\mathrm{e}^{2 \mathrm{x}} \quad \mathrm{M} 1$
Solve for one correct $x \quad$ A1
Get both solutions, x and $y \quad$ A1
B1
B1 $\sqrt{ }$ From their x_{1} (or any other correct)
B1 $\sqrt{ }$ Get at least two others correct, all to a minimum of 4 d.p.

B1 cao; answer may be retrieved despite some errors

M1 $k /(2+x)^{3}$
A1 $\sqrt{ }$ Clearly seen, or explain $k /(2+x)^{3} \neq 0$ as $k \neq 0$; allow ± 0.1864
SR Translate $\mathrm{y}=1 / \mathrm{x}^{2}$ M1
State/show $\mathrm{y}=1 / \mathrm{x}^{2}$ has no TP A1
B1 $\sqrt{ }$ Allow \pm, from their x_{4} and x_{3}

M1 Or any δ_{i} eg use $\delta_{9}=\mathrm{x}_{10}-\mathrm{x}_{9}$
M1
A1 Or answer that rounds to \pm 0.00000003

9 (i) Quote $x=a$
Attempt to divide out
Get $y=x-a$
(ii) Attempt at quad. in $\mathrm{x}(=0)$

Use ${ }^{b 2-} 4 a c \geq 0$ for real x
Get $y^{2}+4 a^{2} \geq 0$
State/show their quad. is always >0
(iii)

B1

M1 Allow M1 for $\mathrm{y}=\mathrm{x}$ here; allow
A1 $(x-a)+k /(x-a)$ seen or implied
A1 Must be equations
M1
M1 Allow >
A1
B1 Allow \geq
B1 $\sqrt{ }$ Two asymptotes from (i) (need not be labelled)

B1 Both crossing points

B1 $\sqrt{ }$ Approaches - correct shape
SR Attempt diff. by quotient/product
rule
M1
Get quadratic in x for $\mathrm{d} y / \mathrm{d} x=0$ and note $b^{2}-4 a c<0$

A1
Consider horizontal asymptotes B1
Fully justify answer B1

4726 Further Pure Mathematics 2

1
(i) $\quad \operatorname{Getf}^{\prime}(x)= \pm \sin x /(1+\cos x)$

Get f "(x) using quotient/product rule
Get $f(0)=\ln 2, f^{\prime}(0)=0, f^{\prime \prime}(0)=-1 / 2$
(ii) Attempt to use Maclaurin correctly

Get $\ln 2-1 / 4 x^{2}$
M1 Reasonable attempt at chain at any stage
M1 Reasonable attempt at quotient/product
B1 Any one correct from correct working
A1 All three correct from correct working
M1 Using their values in $a f(0)+b f^{\prime}(0) x+c f^{\prime \prime}(0) x^{2}$; may be implied
A1 $\sqrt{ }$ From their values; must be quadratic

2 (i) Clearly verify in $y=\cos ^{-1} x$
Clearly verify in $y=1 / 2 \sin ^{-1} x$
(ii) Write down at least one correct diff'al

Get gradient of -2
Get gradient of 1
B1 i.e. $x=1 / 2 \sqrt{ } 3, y=\cos ^{-1}(1 / 2 \sqrt{ } 3)=1 / 6 \pi$, or similar
B1 Or solve $\cos y=\sin 2 y$
SR Allow one B1 if not sufficiently clear detail
M1 Or reasonable attempt to derive; allow \pm
A1 cao
A1 cao

3 (i) Get y-values of 3 and $\sqrt{ } 28$
B1
Show/explain areas of two rectangles equal
y-value x 1 , and relate to $A \quad$ B1
Diagram may be used
(ii) Show $A>0.2\left(\sqrt{ }\left(1+2^{3}\right)+\sqrt{ }\left(1+2.2^{3}\right)+\ldots\right.$
.. $\downarrow(1+2.83))$
M1 Clear areas attempted below curve (5 values)
$=3.87$ (28)
Show $A<0.2\left(\sqrt{ }\left(1+2.2^{3}\right)+\sqrt{ }\left(1+2.4^{3}\right)+\ldots\right.$
$\left.\ldots+\sqrt{ }\left(1+3^{3}\right)\right)$
$=4.33(11)<4.34$

A1 To min. of 3 s.f.
M1 Clear areas attempted above curve (5 values)
A1 To min. of 3 s.f.

4 (i) Correct formula with correct r
Expand r^{2} as $\mathrm{A}+\mathrm{Bsec} \theta+\operatorname{Csec}^{2} \theta$
Get $C \tan \theta$
Use correct limits in their answer
Limits to $1 / 12 \pi+2 \ln (\sqrt{3})+2 \sqrt{3} / 3$
(ii) Use $x=r \cos \theta$ and $r^{2}=x^{2}+y^{2}$ Eliminate r and θ
Get $(x-2) \sqrt{ }\left(x^{2}+y^{2}\right)=x$
M1 May be implied
M1 Allow B $=0$
B1
M1 Must be 3 terms
A1 AEEF; simplified
B1 Or derive polar form from given equation
M1 Use their definitions
A1 A.G.

5 (i) Attempt use of product rule
Clearly get $x=1$
(ii) Explain use of tangent for next approx.

Tangents at successive approx. give $x>1$ B1
M1
A1 Allow substitution of $x=1$
(iii) Attempt correct use of $\mathrm{N}-\mathrm{R}$ with their derivative
Get $x_{2}=-1$
Get -0.6839, -0.5775, (-0.5672...)
Continue until correct to 3 d.p.
Get -0.567
6 (i) Attempt division/equate coeff.
Get $a=2, b=-9$
Derive/quote $x=1$
(ii) Write as quadratic in x

Use $b^{2} \geq 4 a c$ (for real x)
Get $y^{2}+14 y+169 \geq 0$
Attempt to justify positive/negative
Get $(y+7)^{2}+120 \geq 0-$ true for all y

M1

A1 $\sqrt{ }$
A1
M1 May be implied
A1 cao
M1 To lead to some $a x+b$ (allow $b=0$ here)
A1
B1 Must be equations
M1 $\quad\left(2 x^{2}-x(11+y)+(y-6)=0\right)$
M1 Allow <, >
A1
M1 Complete the square/sketch
A1

SC Attempt diff; quot./prod. rule M1
Attempt to solve $\mathrm{d} y / \mathrm{d} x=0 \quad$ M1
Show $2 x^{2}-4 x+17=0$ has
no real roots e.g. $b^{2}-4 a c<0$ A1
Attempt to use no t.p. M1
Justify all y e.g. consider asymptotes and approaches A1

M1 Reasonable attempt at parts
A1
B1
Include use of limits seen
(ii) Express x^{2} as $\left(1+x^{2}\right)-1$

Get $\frac{x^{2}}{\left(1+x^{2}\right)^{n+1}}=\frac{1}{\left(1+x^{2}\right)^{n}}-\frac{1}{\left(1+x^{2}\right)^{n+1}}$
Show $I_{n}=2^{-n}+2 n\left(I_{n}-I_{n+1}\right)$
Tidy to A.G.
(iii) See $2 I_{2}=2^{-1}+I_{1}$

Work out $I_{1}=1 / 4 \pi$
Get $I_{2}=1 / 4+1 / 8 \pi$

B1 Justified
M1 Clear attempt to use their first line above

B1
M1 Quote/derive $\tan ^{-1} X$

8 (i) Use correct exponential for $\sinh x$
Attempt to expand cube of this
Correct cubic
Clearly replace in terms of sinh
(ii) Replace and factorise

Attempt to solve for $\sinh ^{2} x$
Get $k>3$
(iii) Get $x=\sinh ^{-1} C$

Replace in ln equivalent
Repeat for negative root

B1
M1 Must be 4 terms
A1
B1 (Allow RHS \rightarrow LHS or RHS $=$ LHS separately)

M1 Or state $\sinh x \neq 0$
M1 $\quad(=1 / 4(k-3))$ or for k and use $\sinh ^{2} x>0$
A1 Not \geq
M1 ($c= \pm 1 / 2$); allow $\sinh x=c$
A1 $\sqrt{ }$ As $\ln (1 / 2+\sqrt{5} / 4)$; their x
A1 $\sqrt{ }$ May be given as neg. of first answer (no need for $x=0$ implied)
SR Use of exponential definitions
Express as cubic in $\mathrm{e}^{2 x}=u \quad$ M1
Factorise to $(u-1)\left(u^{2}-3 u+1\right)=0 \mathrm{~A} 1$
Solve for $x=0,1 / 2 \ln \left(3 / 2 \pm \frac{\sqrt{5}}{2}\right)$ A1

M1 Or equivalent; allow \pm
Allow use of ln equivalent with Chain Rule
A1
B1 e.g. sketch
M1 No need for c
A1
(iii) Sub. $x=k \cosh u$ M1
Replace all x to $\int k_{1} \sinh ^{2} u \mathrm{~d} u$ Replace as $\int k_{2}(\cosh 2 u-1) \mathrm{d} u$ Integrate correctly
Attempt to replace u with x equivalent Tidy to reasonable form

A1
M1 Or exponential equivalent
A1 $\sqrt{ }$ No need for c
M1 In their answer
A1 cao $\left(1 / 2 x \sqrt{ }\left(4 x^{2}-1\right)-1 / 4 \cosh ^{-1} 2 x(+c)\right)$

4726 Further Pure Mathematics 2

M1 Accept $C=0$

A1 $\sqrt{ }$ Follow-on for $C=0$
M1 Must lead to at least one of their A, B, C
A1 For two correct from correct working only
A1 For third correct
5

B1 Meets x-axis at 90° at all crossing points
B1 Use $-2 \leq x \leq 3$ and $x \geq 4$ only
B1 Symmetry in $\mathrm{O} x$

3	Quote/derive $\mathrm{d} x=\frac{2}{1+t^{2}} \mathrm{~d} t$ Replace all x and $\mathrm{d} x$ from their expressions Tidy to $2 /\left(3 t^{2}+1\right)$ Get $k \tan ^{-1}(A t)$ Get $k=2 / 3 \sqrt{3}, A=\sqrt{ } 3$ Use limits correctly to $2 / 9 \sqrt{ } 3 \pi$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \sqrt{ } \\ & \text { A1 } \\ & \hline 6 \end{aligned}$	Not $\mathrm{d} x=\mathrm{d} t$; ignore limits Not $a /\left(3 t^{2}+1\right)$ Allow $A=1$ if from $p /\left(t^{2}+1\right)$ only Allow $k=a / \sqrt{ } 3$ from line 3; AEEF AEEF
4 (i)		B1	Correct $y=x^{2}$
		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \hline 3 \end{aligned}$	Correct shape/asymptote Crossing (0,1)
(ii)	Define sech $x=2 /\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$ Equate their expression to x^{2} and attempt to simplify Clearly get A.G.	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline 3 \\ & \hline \end{aligned}$	AEEF
(iii)	Cobweb Values > and then < root	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \hline 2 \end{aligned}$	Only from cobweb

4726 Further Pure Mathematics 2

1 (i) Give $1+2 x+(2 x)^{2} / 2$
Get $1+2 x+2 x^{2}$
(ii) $\ln \left(\left(1+2 x+2 x^{2}\right)\right.$
$\left.+\left(1-2 x+2 x^{2}\right)\right)=$
$\ln \left(2+4 x^{2}\right)=$
$\ln 2+\ln \left(1+2 x^{2}\right)$
$\ln 2+2 x^{2}$

2 (i) $x_{2}=1.8913115$
$x_{3}=1.8915831$
$x_{4}=1.8915746$
(ii) $e_{3} / e_{2}=-0.031(1)$
$e_{4} / e_{3}=-0.036(5)$
State $\mathrm{f}^{\prime}(\alpha) \approx e_{3} / e_{2} \approx e_{4} / e_{3}$

3 (i) Diff. $\sin y=x$
Use $\sin ^{2}+\cos ^{2}=1$ to A.G.
Justify +
(ii) Get $2 /\left(\sqrt{ }\left(1-4 x^{2}\right)\right.$
$+1 /\left(\sqrt{ }\left(1-y^{2}\right) d y / \mathrm{d} x=0\right.$
Find $y=\sqrt{ } 3 / 2$
Get $-2 \sqrt{ } 3 / 3$

M1 Reasonable 3 term attempt e.g. allow $2 x^{2} / 2$
A1 cao
SC Reasonable attempt at $\mathrm{f}^{\prime}(0)$ and $\mathrm{f}^{\prime \prime}(0)$ M1
Get $1+2 x+2 x^{2}$
cao A1
M1 Attempt to sub for $\mathrm{e}^{2 x}$ and $\mathrm{e}^{-2 x}$
A1 $\sqrt{ }$ On their part (i)
M1 Use of log law in reasonable expression
A1 cao
SC Use of Maclaurin for $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$ M1
One correct A1
Attempt $f(0), f^{\prime}(0)$ and $f^{\prime \prime}(0) \quad$ M1
Get cao
B1 $\quad x_{2}$ correct; allow answers which round
B1 $\sqrt{ }$ For any other from their working
B1 For all three correct
M1 Subtraction and division on their values; allow \pm
A1 Or answers which round to -0.031 and -0.037
$\mathrm{B} 1 \sqrt{ }$ Using their values but only if approx. equal; allow differentiation if correct conclusion; allow gradient for f^{\prime}

M1 Implicit diff. to $\mathrm{d} y / \mathrm{d} x= \pm(1 / \cos y)$
A1 Clearly derived; ignore \pm
B1 e.g graph/ principal values
M1 Attempt implicit diff. and chain rule; allow e.g. $\left(1-2 x^{2}\right)$ or $a / \sqrt{ }\left(1-4 x^{2}\right)$

A1
M1 Method leading to y
A1 $\sqrt{ }$ AEEF; from their a above
SC Write $\sin \left(1 / 2 \pi-\sin ^{-1} 2 x\right)=\cos \left(\sin ^{-1} 2 x\right)$ B1
Attempt to diff. as above M1
Replace x in reasonable $\mathrm{d} y / \mathrm{d} x$ and attempt to tidy M1
Get result above A1

4 (i) Let $x=\cosh \theta$ such that M1
$\mathrm{d} x=\sinh \theta \mathrm{d} \theta$
Clearly use $\cosh ^{2}-\sinh ^{2}=1$
(ii) Replace $\cosh ^{2} \theta$

Attempt to integrate their expression
Get $1 / 4 \sinh 2 \theta+1 / 2 \theta(+c)$
Clearly replace for x to A.G.
A1
B1

A1 Clearly derive A.G.
M1 Allow $a(\cosh 2 \theta \pm 1)$
M1 Allow bsinh $2 \theta \pm a \theta$

Condone no $+c$
SC Use expo. def ${ }^{\text {n }}$; three terms M1
Attempt to integrate M1
Get ${ }^{1} / 8\left(\mathrm{e}^{2 \theta}-\mathrm{e}^{-2 \theta}\right)+1 / 2 \theta(+c) \quad$ A1
Clearly replace for x to A.G. B1
5 (i) (a) State ($x=$) α
B1
None of roots
B1
(b) Impossible to say All roots can be derived
(ii)

6 (i) Correct definitions used
Attempt at $\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2} / 4+1$
Clearly derive A.G.
(ii) Form a quadratic in $\sinh x$

Attempt to solve
Get $\sinh x=-1 / 2$ or 3
Use correct \ln expression
Get $\ln \left(-1 / 2+\frac{\sqrt{5}}{2}\right)$ and $\ln (3+\sqrt{ } 10)$
7 (i) $\mathrm{OP}=3+2 \cos \alpha$
$\mathrm{OQ}=3+2 \cos (1 / 2 \pi+\alpha)$ $=3-2 \sin \alpha$
Similarly $O R=3-2 \cos \alpha$

$$
\mathrm{OS}=3+2 \sin \alpha
$$

Sum $=12$
(ii) Correct formula with attempt at r^{2} Square r correctly
Attempt to replace $\cos ^{2} \theta$ with
$a(\cos 2 \theta \pm 1)$
Integrate their expression Get ${ }^{11 \pi / 4}-1$

B1
M1
A1 M1 A1 M1 A1M1 M1

A1 $\sqrt{ }$
A1

Allow $\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}+1$; allow /2

Factors or formula
On their answer(s) seen once

B1
B1 Some discussion of values close to 1 or 2 or central leading to correct conclusion

B1 Correct x for $y=0$; allow 0.591, 1.59, 2.31
B1 Turning at $(1,0.8)$ and/or $(1,-0.8)$
B1 Meets x-axis at 90°
B1 Symmetry in x-axis; allow

Any other unsimplified value
Attempt at simplification of at least two correct expressions
cao
Need not be expanded, but three terms if it is

Need three terms
cao

8 (i) Area $=\int 1 /(x+1) \mathrm{d} x$
Use limits to $\ln (n+1)$
Compare area under curve to areas
of rectangles
Sum of areas $=1 x(1 / 2+1 / 3+\ldots+$ $1 /(n+1))$
Clear detail to A.G.
(ii) Show or explain areas of rectangles above curve Areas of rectangles (as above) > area under curve
(iii) Add 1 to both sides in (i) to make $\sum\left({ }^{1} / r\right)$
Add ${ }^{1 /(n+1)}$ to both sides in (ii) to make $\sum\left({ }^{1} / r\right)$
(iv) State divergent

Explain e.g. $\ln (n+1) \rightarrow \infty$ as $n \rightarrow \infty$
B1
B1
9 (i) Require denom. $=0$
Explain why denom. $\neq 0$
(ii) Set up quadratic in x

M1
Get $2 y x^{2}-4 x+\left(2 a^{2} y+3 a\right)=0$
Use $b^{2} \geq 4 a c$ for real x
Attempt to solve their inequality
Get $y>1 / 2 a$ and $y<-2 / a$
B1
B1
M1
A1

B1

A1

B1 Include or imply correct limits

A1 Explanation required e.g. area of last rectangle at $x=n$, area under curve to $x=n$

A1 First and last heights seen or implied; A.G.

B1 Must be clear addition

B1 Must be clear addition; A.G.

B1 Attempt to solve, explain always >0 etc.

M1 Produce quadratic inequality in y from their quad.; allow use of $=$ or $<$
M1 Factors or formula
A1 Justified from graph
SC Attempt diff. by quot./product rule M1
Solve $\mathrm{d} y / \mathrm{d} x=0$ for two values of $x \quad$ M1
Get $x=2 a$ and $x=-a / 2 \quad$ A1
Attempt to find two y values M1
Get correct inequalities (graph used to justify them) A1
(iii) Split into two separate integrals

Get $k \ln \left(x^{2}+a^{2}\right)$
Get $k_{1} \tan ^{-1}(x / a)$
Use limits and attempt to simplify
M1

Get $\ln 2.5-1.5 \tan ^{-1} 2+3 \pi / 8$

A1
A1
Or $p \ln \left(2 x^{2}+2 a^{2}\right)$
k_{1} not involving a
M1

A1 AEEF
SC Sub. $x=a \tan \theta$ and $\mathrm{d} x=a \sec ^{2} \theta \mathrm{~d} \theta \quad$ M1
Reduce to $\int p \tan \theta-p_{1} \mathrm{~d} \theta \quad \mathrm{~A} 1$
(ignore limits here)
Integrate to $p \ln (\sec \theta)-p_{1} \theta$ A1
Use limits (old or new) and attempt to simplify
Get answer above A1

4726 Further Pure Mathematics 2

1(i) Attempt area $= \pm \Sigma(0.3 y)$ for at least three y values
Get 1.313(1..) or 1.314
(ii) Attempt \pm sum of areas (4 or 5 values)

Get 0.518(4..)

Or

Attempt answer to part (i)-final rectangle Get 0.518(4..)
(iii) Decrease width of strips

2 Attempt to set up quadratic in x
Get $x^{2}(y-1)-x(2 y+1)+(y-1)=0$
Use $b^{2} \geq 4 a c$ for real x on their quadratic
Clearly solve to AG

3(i) Reasonable attempt at chain rule
Reasonable attempt at product/quotient rule
Correctly get $\mathrm{f}^{\prime}(0)=1$
Correctly get $\mathrm{f}^{\prime \prime}(0)=1$
(ii) Reasonable attempt at Maclaurin with their values
Get $1+x+1 / 2 x^{2}$

4 Attempt to divide out.
Get $x^{3}=$
$A(x-2)\left(x^{2}+4\right)+B\left(x^{2}+4\right)+(C x+D)(x-2)$
State/derive/quote $A=1$
Use x values and/or equate coeff

May be implied	
Or greater accuracy	
May be implied	
Or greater accuracy	
SC	
If answers only seen,	
$1.313(1 .$.$) or 1.314$	B2
$0.518(4 .)$.	B2
$-1.313(1 .$.$) or -1.314$	B1
$-0.518(4 .)$.	B1

Use more strips or equivalent
Must be quadratic; = 0 may be implied
Allow $=,>,<, \leq$ here; may be implied If other (in)equalities used, the step to AG must be clear
SC
Reasonable attempt to diff. using
prod/quot rule
M1
Solve correct $\mathrm{d} y / \mathrm{d} x=0$ to get

$$
x=-1, y=1 / 4
$$

A1
Attempt to justify inequality e.g. graph or to show $\mathrm{d}^{2} y / \mathrm{d} x^{2}>0 \quad$ M1
Clearly solve to AG A1
Product in answer
Sum of two parts
SC
Use of $\ln y=\sin x$ follows same scheme
In $a f(0)+b f^{\prime}(0) x+c \mathrm{f}^{\prime \prime}(0) x^{2}$
From their $f(0), f^{\prime}(0), f^{\prime \prime}(0)$ in a correct Maclaurin; all non-zero terms

Or $A+B /(x-2)+(C x(+D)) /\left(x^{2}+4\right)$; allow $A=1$ and/or $B=1$ quoted
Allow $\sqrt{ }$ mark from their Part Fract; allow $D=0$ but not $C=0$

To potentially get all their constants

Get $B=1, C=1, D=-2$

5(i) Derive/quote $\mathrm{d} \theta=2 \mathrm{~d} t /\left(1+t^{2}\right)$
Replace their $\cos \theta$ and their $\mathrm{d} \theta$, both in terms of t
Clearly get $\int\left(1-t^{2}\right) /\left(1+t^{2}\right) \mathrm{d} t$ or equiv
Attempt to divide out
Clearly get/derive AG

A1 For one other correct from cwo
A1 For all correct from cwo

B1 May be implied
M1 Not $\mathrm{d} \theta=\mathrm{d} t$

A1 Accept limits of t quoted here
M1 Or use AG to get answer above
A1
SC
Derive $\mathrm{d} \theta=2 \cos ^{2} 1 / 2 \theta \mathrm{~d} t \quad$ B1
Replace $\cos \theta$ in terms of half-angles and their $\mathrm{d} \theta(\neq \mathrm{d} t) \quad$ M1
Get $\int 2 \cos ^{2} 1 / 2 \theta-1 \mathrm{~d} t$ or
$\int 1-1 / 2 \cos ^{2} 1 / 2 \theta .2 /\left(1+t^{2}\right) \mathrm{d} t \quad$ A1
Use $\sec ^{2} 1 / 2 \theta=1+t^{2} \quad$ M1
Clearly get/derive AG A1
(ii) Integrate to $a \tan ^{-1} b t-t \quad$ M1

Get¹⁄2 $\pi-1$
A1
$6 \quad$ Get $k \sinh ^{-1} k_{1} X$
Get $1 / 3 \sinh ^{-1} 3 / 4 x$
Get $1 / 2 \sinh ^{-1} 2 / 3 x$
Use limits in their answers
Attempt to use correct ln laws to set up a solvable equation in a
Get $a=2^{1 / 3} .3^{1 / 2}$

A1
For either integral; allow attempt at \ln version here
Or \ln version
Or ln version

M1
A1
Or equivalent

7(i)

(ii) Reasonable attempt at product rule, giving two terms
Use correct Newton-Raphson at least once with their $\mathrm{f}^{\prime}(x)$ to produce an x_{2}
Get $x_{2}=2.0651$
Get $x_{3}=2.0653, x_{4}=2.0653$
(iii) Clearly derive coth $x=1 / 2 x$

Attempt to find second root e.g. symmetry Get ± 2.0653

8(i)
(a) Get $1 / 2\left(\mathrm{e}^{\ln a}+\mathrm{e}^{-\ln a}\right)$

Use $\mathrm{e}^{\ln a}=a$ and $\mathrm{e}^{-\ln a}=1 / a$
Clearly derive AG
(b) Reasonable attempt to multiply out their attempts at exponential definitions of cosh and sinh
Correct expansion seen as $\mathrm{e}^{(x+y)}$ etc.
Clearly tidy to AG
(ii) Use $x=y$ and $\cosh 0=1$ to get AG
(iii) Attempt to expand and equate coefficients

Attempt to eliminate R (or a) to set up a solvable equation in a (or R)

Get $a=3 / 2$ (or $R=12$)
Replace for a (or R) in relevant equation to set up solvable equation in R (or a) Get $R=12$ (or $a=3 / 2$)
(iv) Quote/derive $\left(\ln ^{3} / 2,12\right)$

9(i) Use $\sin \theta \cdot \sin ^{n-1} \theta$ and parts

B1

B1
B1 $y= \pm 1$ asymptotes; may be implied if seen as on graph
y-axis asymptote; equation may be implied if clear

Shape

May be implied

One correct at any stage if reasonable cao; or greater accuracy which rounds

AG; allow derivation from AG Two roots only
\pm their iteration in part (ii)

A1 Ignore if $a=2 / 3$ also given On their R and a

Reasonable attempt with 2 parts, one yet to be integrated
Get correct expression A1

Reasonable attempt to put $\cos ^{2} 2 \theta$ into integrable form and integrate
Reasonable attempt to integrate $\cos ^{3} 2 \theta$ as e.g. $\cos ^{2} 2 \theta \cdot \cos 2 \theta$ M1

Get $5 \pi / 32$

Get
$-\cos \theta \cdot \sin ^{n-1} \theta+(n-1) \int \sin ^{n-2} \theta \cdot \cos ^{2} \theta \mathrm{~d} \theta$
Replace $\cos ^{2}=1-\sin ^{2}$
Clearly use limits and get AG
(ii) (a) Solve for $r=0$ for at least one θ

Get $(\theta)=0$ and π

(b)Correct formula used; correct r
Use $6 I_{6}=5 I_{4}, 4 I_{4}=3 I_{2}$
Attempt I_{0} (or I_{2})
Replace their values to get I_{6}
Get $5 \pi / 32$
Use symmetry to get $5 \pi / 32$

Or

Correct formula used; correct r M1
Reasonable attempt at formula
$(2 \operatorname{isin} \theta)^{6}=(z-1 / z)^{6} \quad$ M1
Attempt to multiply out both sides
(7 terms)
M1
Get correct expansion A1
Convert to trig. equivalent and integrate their expression
Get $5 \pi / 32$ A1

Or

Correct formula used; correct r
Correct formula used; correct r
Use double-angle formula and attempt to cube (4 terms)M1

Signs need to be carefully considered
θ need not be correct Ignore extra answers out of range

General shape (symmetry stated or approximately seen)

May be $\int r^{2} \mathrm{~d} \theta$ with correct limits At least one

$$
\left(I_{0}=1 / 2 \pi\right)
$$

May be implied but correct use of limits must be given somewhere in answer
cwo
cwo

4726 Further Pure Mathematics 2

1 (i)	Get 0.876096, 0.876496, 0.876642	$\begin{aligned} & \hline \text { B1 } \sqrt{ } \\ & \text { B1 } \end{aligned}$	For any one correct or $\sqrt{ }$ from wrong answer; radians only All correct
(ii)	Subtract correctly (0.00023(0), 0.000084) Divide their errors as e_{4} / e_{3} only Get 0.365(21...)	$\begin{aligned} & \text { B1V } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	On their answers May be implied Cao
2 (i)	Find $\mathrm{f}^{\prime}(x)=1 /\left(1+(1+x)^{2}\right)$ Get $f(0)=1 / 4 \pi$ and $f^{\prime}(0)=1 / 2$ Attempt $\mathrm{f}^{\prime \prime}(x)$ Correctly get $f^{\prime \prime}(0)=-1 / 2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \sqrt{ } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Quoted or derived; may be simplified or left as $\sec ^{2} y \mathrm{~d} y / \mathrm{d} x=1$ On their $\mathrm{f}^{\prime}(0)$; allow $\mathrm{f}(0)=0.785$ but not 45 Reasonable attempt at chain/quotient rule or implicit differentiation A.G.
(ii)	Attempt Maclaurin as $a f(0)+b f^{\prime}(0)+c f^{\prime \prime}(0)$ Get $1 / 4 \pi+1 / 2 x-1 / 4 x^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Using their $f(0)$ and $\mathrm{f}^{\prime}(0)$ Cao; allow 0.785
3 (i)	Attempt gradient as $\pm \mathrm{f}\left(x_{1}\right) /\left(x_{2}-x_{1}\right)$ Equate to gradient of curve at x_{1} Clearly arrive at A.G. SC Attempt equation of tangent Put $\left(x_{2}, 0\right)$ into their equation Clearly arrive at A.G.	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow reasonable y-step/x-step Allow \pm Beware confusing use of \pm As $y-\mathrm{f}\left(x_{1}\right)=\mathrm{f}^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)$
(ii)	Diagram showing at least one more tangent Description of tangent meeting x-axis, used as next starting value	B1 B1	
(iii)	Reasonable attempt at N - R Get 1.60	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Clear attempt at differentiation Or answer which rounds
$4 \quad \text { (i) }$	State $r=1$ and $\theta=0$.	B1 B1	May be seen or implied Correct shape, decreasing r (not through O)
(ii)	Use $1 / 2 \int r^{2} \mathrm{~d} \theta$ with $r=\mathrm{e}^{-2 \theta}$ seen or implied Integrate correctly as $-1 / 8 \mathrm{e}^{-4 \theta}$ Use limits in correct order Use $r_{1}^{2}=\mathrm{e}^{-4 \theta}$ etc. Clearly get $k=1 / 8$	M1 A1 M1 M1 A1	Allow $1 / 2 \int \mathrm{e}^{4 \theta} \mathrm{~d} \theta$ In their answer May be implied

$\begin{array}{lc} \hline 5 & \text { (i) } \end{array}$	Use correct definitions of cosh and sinh Attempt to square and subtract Clearly get A.G. Show division by cosh 2	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	On their definitions Or clear use of first result
(ii)	Rewrite as quadratic in sech and attempt to solve Eliminate values outside $0<$ sech ≤ 1 Get $x=\ln (2+\sqrt{3})$ Get $x=-\ln (2+\sqrt{3})$ or $\ln (2-\sqrt{3})$	M1 B1 A1 A1	Or quadratic in cosh Or eliminate values outside cosh ≥ 1 (allow positive)
6 (i)	Attempt at correct form of P.F. Rewrite as $4=$ $A(1+x)\left(1+x^{2}\right)+B(1-x)\left(1+x^{2}\right)+$ $(C x+D)(1-x)(1+x)$ Use values of x /equate coefficients Get $A=1, B=1$ Get $C=0, D=2$	M1 M1 $\sqrt{ }$ M1 A1 A1	Allow $C x /\left(x^{2}+1\right)$ here; $\operatorname{not} C=0$ From their P.F. cwo SC Use of cover-up rule for A, B M1 If both correct A1 cwo
(ii)	Get $A \ln (1+x)-B \ln (1-x)$ Get $D \tan ^{-1} x$ Use limits in their integrated expressions Clearly get A.G.	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Or quote from List of Formulae
7 (i)	LHS $=$ sum of areas of rectangles, area $=$ $1 \mathrm{x} y$-value from $x=1$ to $x=n$ RHS $=$ Area under curve from $x=0$ to n	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
(ii)	Diagram showing areas required Use sum of areas of rectangles Explain/show area inequality with limits in integral clearly specified	B1 B1 B1	
(iii)	Attempt integral as $k x^{4 / 3}$ Limits gives 348(.1) and 352(.0) Get 350	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Allow one correct From two correct values only

8 (i)	Get $x=1, y=0$	B1,B1	
(ii)	Rewrite as quadratic in x	M1	$\left(x^{2} y-x(2 y+k)+y=0\right)$
	Use $b^{2}-4 a c \geq 0$ for all real x	M1	Allow $>$, = here
	Get correct inequality	A1	$4 k y+k^{2} \geq 0$
	State use of $k>0$ to A.G.	A1	
			SC Use differentiation (parts (ii) and (iii))
			Attempt prod/quotient rule M1
			Solve $=0$ for $x=-1 \quad$ A1
			Use $x=-1$ only (reject $x=1$), $y=-1 / 4 \mathrm{kA} 1$
			Fully justify minimum B1
			Attempt to justify for all x M1
			Clearly get A.G. A1

(iii) Replace $y=-1 / 4 k$ in quadratic in x

Get $x=-1$ only

M1
A1
B1 Through origin with minimum at ($-1,-1 / 4 \mathrm{k}$) seen or given in the answer

B1 Correct shape (asymptotes and approaches)

SC (Start again)
Differentiate and solve $\mathrm{d} y / \mathrm{d} x=0$ for at least one x-value, independent of $k \quad$ M1
Get $x=-1$ only A1

9 (i) Rewrite tanh y as $\left(e^{y}-\mathrm{e}^{-y}\right) /\left(\mathrm{e}^{y}+\mathrm{e}^{-y}\right) \quad$ B1 Or equivalent
Attempt to write as quadratic in $\mathrm{e}^{2 y} \quad$ M1
Clearly get A.G.
(ii) (a) Attempt to diff. and solve $=0$

Get $\tanh x=b / a$
Use $(-1)<\tanh x<1$ to show $b<a$
B1

$$
\begin{array}{rlrl}
\text { SC Use exponentials } & & \text { M1 } \\
\text { Get } \mathrm{e}^{2 x} & =(a+b) /(a-b) & & \text { A1 } \\
\text { Use } \mathrm{e}^{2 x} & >0 \text { to show } b<a & & \text { B1 } \\
& \begin{aligned}
\text { SC Write } x & =\tanh ^{-1}(b / a) & & \text { M1 } \\
& =1 / 2 \ln ((1+b / a) /(1-b / a)) & & \text { A1 } \\
\text { Use }() & >0 \text { to show } b<a & & \text { B1 }
\end{aligned}
\end{array}
$$

(b) Get $\tanh x=1 / a$ from part (ii)(a) B1

Replace as \ln from their answer M1
Get $x=1 / 2 \ln ((a+1) /(a-1)) \quad$ A1
Use $\mathrm{e}^{1 / \ln ((a+1))(a-1))}=\sqrt{ }((a+1) /(a-1)) \quad$ M1 \quad At least once
Clearly get A.G. A1
Test for minimum correctly B1

SC Use of $y=\cosh x(a-\tanh x)$ and $\cosh x=1 / \operatorname{sech} x=1 / \sqrt{ }\left(1-\tanh ^{2} x\right)$

1 Derive/quote $\mathrm{g}^{\prime}(x)=p /\left(1+x^{2}\right)$
Attempt $\mathrm{f}^{\prime}(x)$ as $a /\left(1+b x^{2}\right)$
Use $x=1 / 2$ to set up a solvable equation in p, leading to at least one solution Get $p=\frac{5}{4}$ only

2 Reasonable attempt at $\mathrm{e}^{2 x}\left(1+2 x+2 x^{2}\right)$
Multiply out their expressions to get all terms up to x^{2}
Get $1+3 x+4 x^{2}$
Use binomial, equate coefficients to get 2 solvable equations in a and n
Reasonable attempt to eliminate a or n
Get $n=9, a=1 / 3$ cwo

B1

M1 Allow any $a, b=2$ or 4
M1
A1 AEEF
M1 3 terms of the form $1+2 x+a x^{2}, a \neq 0$
M1 (3 terms) x (minimum of 2 terms)
A1 cao
Reasonable attempt at binomial, each term
M1 involving a and $n\left(a n=3, a^{2} n(n-1) / 2=4\right)$
M1
A1 cao
SC Reasonable $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$ using product rule (2 terms) M1 Use their expressions to find $\mathrm{f}^{\prime}(0)$ and $\mathrm{f}^{\prime \prime}(0)$

M1
Get $1+3 x+4 x^{2}$ cao A1
B1
M1 From their expressions
A1
M1
A1 $\sqrt{ }$ Must involve $\sqrt{ } 3$
A1 A.G.
B1 May be quoted
B1 May be quoted (from correct working)
B1 May be quoted

B1 Correct shape in $-1<x \leq 3$ only (allow just top or bottom half)

B1 90° (at $x=3$) (must cross x-axis i.e. symmetry)
B1 Asymptote at $x=-1$ only (allow -1 seen)
B1 $\sqrt{ }$ Correct crossing points; $\pm \sqrt{ }(b / c)$ from their b, c

5 (i) Reasonable attempt at parts
Get $\mathrm{e}^{x}(1-2 x)^{n}-\int \mathrm{e}^{x} . n(1-2 x)^{n-1} .-2 \mathrm{~d} x$
Evidence of limits used in integrated part Tidy to A.G.
(ii) Show any one of $I_{3}=6 I_{2}-1, I_{2}=4 I_{1}-1$, $I_{1}=2 I_{0}-1$
Get $I_{0}\left(=\mathrm{e}^{1 / 2}-1\right)$ or $I_{1}\left(=2 \mathrm{e}^{1 / 2}-3\right)$
Substitute their values back for their I_{3} Get $48 \mathrm{e}^{1 / 2}-79$

6 (i) Reasonable attempt to differentiate $\sinh y=x$ to get dy/dx in terms of y Replace sinh y to A.G.
(ii) Reasonable attempt at chain rule Get $\mathrm{d} y / \mathrm{d} x=a \sinh \left(a \sinh ^{-1} x\right) / \sqrt{ }\left(x^{2}+1\right)$
Reasonable attempt at product/quotient
Get $\mathrm{d}^{2} y / \mathrm{d} x^{2}$ correctly in some form Substitute in and clearly get A.G.

M1 Leading to second integral
A1 Or $(1-2 x)^{n+1} /(-2(n+1)) e^{x}$ $-\int(1-2 x)^{n+1} /(-2(n+1)) e^{x} d x$
M1 Should show ± 1
A1 Allow $I_{n+1}=2(n+1) I_{n}-1$

B1 May be implied
B1
M1 Not involving n
A1

M1 Allow $\pm \cosh y \mathrm{~d} y / \mathrm{d} x=1$
A1 Clearly use $\cosh ^{2}-\sinh ^{2}=1$
SC Attempt to diff. $y=\ln \left(x+\sqrt{ }\left(x^{2}+1\right)\right)$ using chain rule
Clearly tidy to A.G. A1
M1 To give a product
A1
M1 Must involve sinh and cosh
A1 $\sqrt{ }$ From d $y / \mathrm{d} x=k \sinh \left(a \sinh ^{-1} x\right) / \sqrt{ }\left(x^{2}+1\right)$
A1
SC Write $\sqrt{ }\left(x^{2}+1\right) \mathrm{d} y / \mathrm{d} x=k \sinh \left(a \sinh ^{-1} x\right)$
or similar
Derive the A.G.
B1 $\sqrt{ }$ Any 3(minimum) correct from previous value
B1 Allow one B1 for 5.24 seen if 2 d.p.used
(ii) Show reasonable staircase for any region B1 Drawn curve to line

Describe any one of the three cases B1
Describe all three cases
B1
(iii) Reasonable attempt to use log/expo. rules M1 Allow derivation either way Clearly get A.G.
Attempt $\mathrm{f}^{\prime}(x)$ and use at least once in
correct N-R formula
Get answers that lead to 1.31
(iv) Show $\mathrm{f}^{\prime}(\ln 36)=0$

Explain why N-R would not work

M1
A1 Minimum of 2 answers; allow truncation/rounding to at least 3 d.p.

B1
B1 Tangent parallel to $O x$ would not meet $O x$ again or divide by 0 gives an error

8 (i) Use correct definition of $\cosh x$
Attempt to cube their definition
involving e^{x} and e^{-x} (or $\mathrm{e}^{2 x}$ and e^{x})
Put their 4 terms into LHS and attempt to simplify
Clearly get A.G.
(ii) Rewrite as $k \cosh 3 x=13$

Use ln equivalent on $13 / k$

Get $x=(\pm) 1 / 3 \ln 5$
Replace in cosh x for u
Use $\mathrm{e}^{a \ln b}=b^{a}$ at least once
Get $1 / 2\left(5^{1 / 3}+5^{-1 / 3}\right)$
9 (i) Attempt integral as $k(2 x+1)^{1.5}$
Get 9
Attempt subtraction of areas Get 3
(ii) Use $r^{2}=x^{2}+y^{2}$ and $x=r \cos \theta, y=r \sin \theta$

Eliminate x and y to produce quadratic equation (=0) in $r($ or $\cos \theta)$

M1
Solve their quadratic to get r in terms of θ
(or vice versa)
Clearly get A.G.
Clearly show $\theta_{1}($ at $B)=\tan ^{-1} 3 / 4$ and $\theta_{2}($ at $A)=\pi$
(iii) Use area $=1 / 2 \int r^{2} \mathrm{~d} \theta$ with correct r Rewrite as $k \operatorname{cosec}^{4}(1 / 2 \theta)$
Equate to their part (i) and tidy Get 24

B1

M1
A1

M1

A1
M1
M1
A1
M1

B1

A1 $\sqrt{ }$

B1

M1 Must be 4 terms

SC Allow one B1 for correct derivation from $\cosh 3 x=\cosh (2 x+x)$

M1 Allow $\pm \ln$ or $\ln \left(13 / k \pm \sqrt{ }(13 / k)^{2}-1\right)$ for their k or attempt to set up and solve quadratic via exponentials

A1 cao
M1 Their answer - triangle
A1 $\sqrt{ }$ Their answer $-6(>0)$

A1 $r>0$ may be assumed

SC Eliminate y to get r in terms of x only M1 Get $r=x+1$

A1
SC Start with $r=1 /(1-\cos \theta)$ and derive cartesian
B1 cwo; ignore limits
M1 Not just quoted
M1 To get $\int=$ some constant
A1 A.G.

1	$\begin{aligned} & t=\tan \frac{1}{2} x \Rightarrow \mathrm{~d} t=\frac{1}{2} \sec ^{2} \frac{1}{2} x \mathrm{~d} x=\frac{1}{2}\left(1+t^{2}\right) \mathrm{d} x \\ & \int \frac{1}{1+\sin x+\cos x} \mathrm{~d} x=\int \frac{1}{1+\frac{2 t}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}} \cdot \frac{2}{1+t^{2}} \mathrm{~d} t \\ & =\int \frac{1}{1+t} \mathrm{~d} t=\ln \|1+t\|(+c) \\ & =\ln k\left\|1+\tan \frac{1}{2} x\right\|(+c) \end{aligned}$	B1 M1 A1 M1 A1 5	For correct result AEF (may be implied) For substituting throughout for x For correct unsimplified t integral For integrating (even incorrectly) to $a \ln \|\mathrm{f}(t)\|$. Allow $\|\mid$ or () For correct x expression k may be numerical, c is not required
$2 \text { (i) }$	$\begin{aligned} & \mathrm{f}(x)=\tanh ^{-1} x, \mathrm{f}^{\prime}(x)=\frac{1}{1-x^{2}}, \mathrm{f}^{\prime \prime}(x)=\frac{2 x}{\left(1-x^{2}\right)^{2}} \\ & \mathrm{f}^{\prime \prime \prime}(x)= \\ & \frac{2\left(1-x^{2}\right)^{2}-2 x \cdot 2\left(1-x^{2}\right) \cdot-2 x}{\left(1-x^{2}\right)^{4}} \text { OR } \frac{2 x \cdot 4 x}{\left(1-x^{2}\right)^{3}}+\frac{2}{\left(1-x^{2}\right)^{2}} \\ & =\frac{2\left(1-x^{2}\right)^{2}+8 x^{2}\left(1-x^{2}\right)}{\left(1-x^{2}\right)^{4}} \text { OR } \frac{8 x^{2}}{\left(1-x^{2}\right)^{3}}+\frac{2\left(1-x^{2}\right)}{\left(1-x^{2}\right)^{3}} \\ & =\frac{2\left(1+3 x^{2}\right)}{\left(1-x^{2}\right)^{3}} \end{aligned}$	M1 A1 M1 A1 A1 5	For quoting $\mathrm{f}^{\prime}(x)=\frac{1}{1 \pm x^{2}}$ and attempting to differentiate $\mathrm{f}^{\prime}(x)$ For $\mathrm{f}^{\prime \prime}(x)$ correct $\mathbf{W W W}$ For using quotient $O R$ product rule on $\mathrm{f}^{\prime \prime}(x)$ For correct unsimplified $\mathrm{f}^{\prime \prime \prime}(x)$ For simplified $\mathrm{f}^{\prime \prime \prime}(x)$ wWw AG
(ii)	$\begin{aligned} & \mathrm{f}(0)=0, \mathrm{f}^{\prime}(0)=1, \mathrm{f}^{\prime \prime}(0)=0 \\ & \mathrm{f}^{\prime \prime \prime}(0)=2 \Rightarrow \tanh ^{-1} x=x+\frac{1}{3} x^{3} \end{aligned}$	B1 $\sqrt{ }$ M1 A1 3 8	For all values correct (may be implied) f.t. from (i) For evaluating $\mathrm{f}^{\prime \prime \prime}(0)$ and using Maclaurin expansion For correct series
3 (i)(a)	Asymptote $y=0$	B1 $\mathbf{1}$	For correct equation (allow x-axis)
(b)	METHOD 1 $\begin{aligned} & y=\frac{5 a x}{x^{2}+a^{2}} \Rightarrow y x^{2}-5 a x+a^{2} y=0 \\ & b^{2} \geqslant 4 a c \Rightarrow 25 a^{2} \geqslant 4 a^{2} y^{2} \Rightarrow-\frac{5}{2} \leqslant y \leqslant \frac{5}{2} \end{aligned}$	$\begin{array}{lr} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 4 \\ \hline \end{array}$	For expressing as a quadratic in x For using $b^{2}-4 a c \lesseqgtr 0$ For $25 a^{2}-4 a^{2} y^{2}$ seen or implied For correct range
	METHOD 2 $\begin{aligned} & y=\frac{5 a x}{x^{2}+a^{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-5 a\left(x^{2}-a^{2}\right)}{\left(x^{2}+a^{2}\right)^{2}} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow x= \pm a \Rightarrow y= \pm \frac{5}{2} \end{aligned}$ Asymptote, sketch etc $\Rightarrow-\frac{5}{2} \leqslant y \leqslant \frac{5}{2}$	M1* A1 M1 A1 (*dep)	For differentiating y by quotient $O R$ product rule For correct values of x For finding y values and giving argument for range For correct range
(ii)(a)	$y=0$	B1 1	For correct equation (allow x-axis)
(b)	Maximum $\sqrt{\frac{5}{2}}$, minimum $-\sqrt{\frac{5}{2}}$	$\begin{aligned} & \mathrm{B} 1 \sqrt{ } \\ & \mathrm{~B} 1 \sqrt{ } 2 \end{aligned}$	For correct maximum f.t. from (i)(b) For correct minimum f.t. from (i)(b) Allow decimals
(c)	$x \geqslant 0$	$\begin{gathered} \mathrm{B} 1 \quad 1 \\ 9 \end{gathered}$	For correct set of values (allow in words)

\begin{tabular}{|c|c|c|c|}
\hline \[
4 \text { (i) }
\] \& \[
\begin{aligned}
\& 8 \sinh ^{4} x \equiv \frac{8}{16}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{4} \\
\& \equiv \frac{8}{16}\left(\mathrm{e}^{4 x}-4 \mathrm{e}^{2 x}+6-4 \mathrm{e}^{-2 x}+\mathrm{e}^{-4 x}\right) \\
\& \equiv \frac{1}{2}\left(\mathrm{e}^{4 x}+\mathrm{e}^{-4 x}\right)-\frac{4}{2}\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)+\frac{6}{2} \\
\& \equiv \cosh 4 x-4 \cosh 2 x+3
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
A1 4
\end{tabular} \& \begin{tabular}{l}
\(\sinh x=\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\) seen or implied \\
For attempt to expand \((\ldots)^{4}\) \\
by binomial theorem \(O R\) otherwise \\
For grouping terms for \(\cosh 4 x\) or \(\cosh 2 x\) \\
OR using \(\mathrm{e}^{4 x}\) or \(\mathrm{e}^{2 x}\) expressions from RHS \\
For correct expression AG
\end{tabular} \\
\hline \& SR may be done wholly from RHS to LHS \& \[
\begin{aligned}
\& \text { M1 M1 } \\
\& \text { B1 A1 }
\end{aligned}
\] \& Evidence of factorising required for 2nd M1 \\
\hline \multirow[t]{8}{*}{(ii)} \& \begin{tabular}{l}
METHOD \(1 \cosh 4 x-3 \cosh 2 x+1=0\)
\[
\begin{aligned}
\& \Rightarrow\left(8 \sinh ^{4} x+4 \cosh 2 x-3\right)-3 \cosh 2 x+1=0 \\
\& \Rightarrow 8 \sinh ^{4} x+2 \sinh ^{2} x-1=0 \\
\& \Rightarrow\left(4 \sinh ^{2} x-1\right)\left(2 \sinh ^{2} x+1\right)=0 \Rightarrow \sinh x= \pm \frac{1}{2} \\
\& \Rightarrow x=\ln \left(\pm \frac{1}{2}+\frac{1}{2} \sqrt{5}\right)= \pm \ln \left(\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)
\end{aligned}
\] \\
SR Similar scheme for \(8 \cosh ^{4} x-1\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
A1 \(\sqrt{ } 5\) \\
\(4 \cosh ^{2} x+\)
\end{tabular} \& \begin{tabular}{l}
For using (i) and \(\cosh 2 x \equiv \pm 1 \pm 2 \sinh ^{2} x\) \\
For correct equation \\
For solving their quartic for \(\sinh x\) \\
For correct \(\sinh x\) (ignore other roots) \\
For correct answers (and no more) \\
f.t. from their value(s) for \(\sinh x\)
\[
5=0 \Rightarrow \cosh x=\frac{1}{2} \sqrt{5} \Rightarrow x= \pm \ln \left(\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)
\]
\end{tabular} \\
\hline \& \& M1
A1
M1
A1
A1 \(\sqrt{ } 1\) \& \begin{tabular}{l}
For using \(\cosh 4 x \equiv \pm 2 \cosh ^{2} 2 x \pm 1\) \\
For correct equation \\
For solving for \(\cosh 2 x\) \\
For correct cosh \(2 x\) (ignore others) \\
For correct answers (and no more) \\
f.t. from value(s) for \(\cosh 2 x\)
\end{tabular} \\
\hline \& METHOD 3 Put all \& M1 \& For changing to \(\mathrm{e}^{ \pm k x}\) \\
\hline \& \(\Rightarrow \mathrm{e}^{4 x}-3 \mathrm{e}^{2 x}+2-3 \mathrm{e}^{-2 x}+\mathrm{e}^{-4 x}=0\) \& A1 \& \\
\hline \& \(\Rightarrow\left(\mathrm{e}^{4 x}+1\right)\left(\mathrm{e}^{4 x}-3 \mathrm{e}^{2 x}+1\right)=0\) \& M1 \& For solving for \(\mathrm{e}^{2 x}\) \\
\hline \& \& A1 \& For correct \(\mathrm{e}^{2 x}\) (ignore others) \\
\hline \& \[
\Rightarrow \mathrm{e}^{2 x}=\frac{1}{2}(3 \pm \sqrt{5}) \Rightarrow x=\frac{1}{2} \ln \left(\frac{3}{2} \pm \frac{1}{2} \sqrt{5}\right)
\] \& A1 \(\sqrt{ }\) \& For correct answers (and no more) f.t. from value(s) for \(\mathrm{e}^{2 x}\) \\
\hline \& \multicolumn{3}{|c|}{9} \\
\hline 5 (i) \& \(x_{n+1}=x_{n}-\frac{x_{n}{ }^{3}-5 x_{n}+3}{3 x_{n}^{2}-5}=\frac{2 x_{n}{ }^{3}-3}{3 x_{n}{ }^{2}-5}\) \& M1 A1 A1 3 \& \begin{tabular}{l}
For attempt at N -R formula \\
For correct N -R expression \\
For correct answer (necessary details \\
needed) AG \\
Allow omission of suffixes
\end{tabular} \\
\hline (ii) \& \[
\begin{aligned}
\& \mathrm{F}^{\prime}(x)= \\
\& \frac{6 x^{2}\left(3 x^{2}-5\right)-6 x\left(2 x^{3}-3\right)}{\left(3 x^{2}-5\right)^{2}}=\frac{6 x\left(x^{3}-5 x+3\right)}{\left(3 x^{2}-5\right)^{2}} \\
\& \mathrm{~F}^{\prime}(\alpha)=\frac{6 \alpha\left(\alpha^{3}-5 \alpha+3\right)}{\left(3 \alpha^{2}-5\right)^{2}}=0 \text { since } \alpha^{3}-5 \alpha+3=0
\end{aligned}
\] \& M1
M1

A1 \& | For using quotient $O R$ product rule to find $\mathrm{F}^{\prime}(x)$ |
| :--- |
| For factorising numerator to show $k\left(x^{3}-5 x+3\right)$ |
| For correct explanation of AG |

\hline (iii) \& | $\begin{aligned} & x_{1}=2 \Rightarrow 1.85714,1.83479,1.83424,1.83424 \\ & (\alpha=) 1.8342 \end{aligned}$ |
| :--- |
| SR For starting value leading to another root allow up to B1 B1 B0 | \& | B1 |
| :--- |
| B1 |
| B1 3 | \& | First iterate correct to at least 4 d.p. $O R \frac{13}{7}$ |
| :--- |
| For 2 equal iterates to at least 4 d.p. |
| For correct α to 4 d.p. |
| Allow answer rounding to 1.8342 |
| SR If not N-R, B0 B0 B0 |

\hline
\end{tabular}

$6 \text { (i) }$	$\begin{aligned} & y=x^{x} \Rightarrow \ln y=x \ln x \Rightarrow \frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=1+\ln x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=x^{x}(1+\ln x)=0 \Rightarrow \ln x=-1 \Rightarrow x=\mathrm{e}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For differentiating $\ln y O R x \ln x$ w.r.t. x For $(1+\ln x)$ seen or implied For correct x-value from fully correct working AG
(ii)	$\begin{aligned} & A>0.2 \times 0.5^{0.5}+0.2 \times 0.7^{0.7}+0.1 \times 0.9^{0.9} \\ & \Rightarrow A>0.3881(858)>0.388 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	For areas of 3 lower rectangles For lower bound rounding to AG
	$\begin{aligned} & A<0.2 \times 0.7^{0.7}+0.2 \times 0.9^{0.9}+0.1 \times 1^{1} \\ & \Rightarrow A<0.4377(177)<0.438 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	For areas of 3 upper rectangles For upper bound rounding to 0.438
(iv)		M1 A1 B1 3	Consider rectangle of height $f\left(e^{-1}\right)$ Use at least 1 lower rectangle, height $\mathrm{f}\left(\mathrm{e}^{-1}\right)$ Use at least 1 upper rectangle, height $\mathrm{f}(0)$ SR If more than one rectangle is used for either bound, they must be shown correctly
7 (i)	$\cos 3 \theta=\cos (-3 \theta)$ OR $\cos \theta=\cos (-\theta)$ for all θ \Rightarrow equation is unchanged, so symmetrical about $\theta=0$	M1 $\text { A1 } 2$	For a correct procedure for symmetry related to the equation $O R$ to $\cos 3 \theta$ For correct explanation relating to equation AG
(ii)	$\begin{aligned} & r=0 \Rightarrow \cos 3 \theta=-1 \\ & \Rightarrow \theta= \pm \frac{1}{3} \pi, \pi \end{aligned}$	M1 A1 A1 3	For obtaining equation for tangents A1 for any 2 values A1 for all, no extras (ignore outside range)
(iii)	$\begin{aligned} & \int_{-\frac{1}{3} \pi}^{\frac{1}{3} \pi} \frac{1}{2}(1+\cos 3 \theta)^{2}(\mathrm{~d} \theta) \\ & =\frac{1}{2} \int_{-\frac{1}{3} \pi}^{\frac{1}{3} \pi} 1+2 \cos 3 \theta+\cos ^{2} 3 \theta \mathrm{~d} \theta \\ & =\frac{1}{2} \int_{-\frac{1}{3} \pi}^{\frac{1}{3} \pi} 1+2 \cos 3 \theta+\frac{1}{2}(1+\cos 6 \theta) \mathrm{d} \theta \\ & =\frac{1}{2}\left[\theta+\frac{2}{3} \sin 3 \theta+\left(\frac{1}{2} \theta+\frac{1}{12} \sin 6 \theta\right)\right]_{-\frac{1}{3} \pi}^{\frac{1}{3} \pi} \\ & =\frac{1}{2} \pi \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1* } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { (*dep) } \\ & \text { A1 } 5 \\ & \mathbf{1 0} \end{aligned}$	For correct integral with limits soi (limits may be $\left[0, \frac{1}{3} \pi\right]$ at any stage) For multiplying out, giving at least 2 terms For integration to $A \theta+B \sin 3 \theta+C \sin 6 \theta$ AEF For completing integration and substituting their limits into terms in ${ }_{\cos }^{\cos } n \theta$ For correct area www

8 (i)	METHOD 1 $\sinh \left(\cosh ^{-1} 2\right)=$ $\sinh \beta=\sqrt{\cosh ^{2} \beta-1}=\sqrt{2^{2}-1}=\sqrt{3}$	M1 A1 2	For appropriate use of $\sinh ^{2} \theta=\cosh ^{2} \theta-1$ For correct verification to AG
	$\begin{aligned} & \text { METHOD } 2 \\ & \sinh ^{-1} \sqrt{3}=\ln (\sqrt{3}+2), \cosh ^{-1} 2=\ln (2+\sqrt{3}) \\ & \Rightarrow \sinh \left(\cosh ^{-1} 2\right)=\sqrt{3} \end{aligned}$		For attempted use of \ln forms of $\sinh ^{-1} x$ and $\cosh ^{-1} x$ For both \ln expressions seen
	METHOD 3 $\cosh ^{-1} 2=\ln (2+\sqrt{3})$ $\begin{aligned} & \sinh \left(\cosh ^{-1} 2\right)=\frac{1}{2}\left(\mathrm{e}^{\ln (2+\sqrt{3})}-\mathrm{e}^{-\ln (2+\sqrt{3})}\right) \\ & =\frac{1}{2}(2+\sqrt{3}-(2-\sqrt{3}))=\sqrt{3} \end{aligned}$	M1 A1	For use of \ln form of $\cosh ^{-1} x$ and definition of $\sinh x$ For correct verification to AG SR Other similar methods may be used Note that $\ln (2+\sqrt{3})=-\ln (2-\sqrt{3})$
(ii)	$\begin{aligned} & I_{n}=\int_{0}^{\beta} \cosh ^{n} x \mathrm{~d} x \\ & =\left[\sinh x \cdot \cosh ^{n-1} x\right]_{0}^{\beta}-\int_{0}^{\beta} \sinh ^{2} x \cdot(n-1) \cosh ^{n-2} x \mathrm{~d} x \\ & =\sinh \beta \cdot \cosh ^{n-1} \beta-(n-1) \int_{0}^{\beta}\left(\cosh ^{2} x-1\right) \cosh ^{n-2} x \mathrm{c} \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { A1 } \\ \text { X1 } \left.{ }^{\text {M1 }} \text { (dep }\right) \end{gathered}$	For attempt to integrate $\cosh x \cdot \cosh ^{n-1} x$ by parts For correct first stage of integration (ignore limits) For using $\sinh ^{2} x=\cosh ^{2} x-1$
	$\begin{aligned} & =2^{n-1} \sqrt{3}-(n-1)\left(I_{n}-I_{n-2}\right) \\ & \Rightarrow n I_{n}=2^{n-1} \sqrt{3}+(n-1) I_{n-2} \end{aligned}$	A1 B1 A1 6	For $(n-1)\left(I_{n}-I_{n-2}\right)$ correct For $2^{n-1} \sqrt{3}$ correct at any stage For correct result AG
(iii)	$\begin{aligned} & I_{1}=\int_{0}^{\beta} \cosh x \mathrm{~d} x=\sinh \beta=\sqrt{3} \\ & I_{3}=\frac{1}{3}\left(2^{2} \sqrt{3}+2 \sqrt{3}\right)=2 \sqrt{3} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For correct value For using (ii) with $n=3$ OR $n=5$ For $I_{3}=\frac{1}{3}\left(2^{2} \sqrt{3}+2 I_{1}\right)$ OR $I_{5}=\frac{1}{5}\left(2^{4} \sqrt{3}+4 I_{3}\right)$
	$I_{5}=\frac{1}{5}\left(2^{4} \sqrt{3}+8 \sqrt{3}\right)=\frac{24}{5} \sqrt{3}$	A1 4 12	For correct value

1	$\begin{aligned} & \frac{2 x+3}{(x+3)\left(x^{2}+9\right)} \equiv \frac{A}{x+3}+\frac{B x+C}{x^{2}+9} \\ & A=-\frac{1}{6} \\ & 2 x+3 \equiv A\left(x^{2}+9\right)+(B x+C)(x+3) \\ & B=\frac{1}{6}, \quad C=\frac{3}{2} \\ & \quad \Rightarrow \frac{-1}{6(x+3)}+\frac{x+9}{6\left(x^{2}+9\right)} \end{aligned}$	B1 M1 A1 A1	For correct form seen anywhere with letters or values For correct A (cover up or otherwise) For equating coefficients at least once.(or substituting values) into correct identity. For correct B and C For correct final statement cao, oe
2(i)	Asymptote $x=2$ $\begin{aligned} & y=x-4-\frac{13}{x-2} \\ & \Rightarrow \text { asymptote } y=x-4 \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } \\ \text { M1 } & \\ \text { A1 } & \\ \hline & \\ \hline \end{array}$	For correct equation For dividing out (remainder not required) For correct equation of asymptote (ignore any extras)
(ii)	METHOD 1 $\begin{aligned} & x^{2}-(y+6) x+(2 y-5)=0 \\ & b^{2}-4 a c(\geq 0) \Rightarrow(y+6)^{2}-4(2 y-5)(\geq 0) \\ & \Rightarrow y^{2}+4 y+56(\geq 0) \\ & \Rightarrow(y+2)^{2}+52 \geq 0 \text { : this is true } \forall y \end{aligned}$ So y takes all values	M1 M1 A1 A1	N.B. answer given For forming quadratic in x For considering discriminant For correct simplified expression in y soi For completing square (or equivalent) and correct conclusion www
	METHOD 2 Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}-4 x+17}{(x-2)^{2}}$ OR $1+\frac{13}{(x-2)^{2}}$ $\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x} \geq 1 \forall x$ so y takes all values.	M1 A1 M1 A1 4	For finding $\frac{\mathrm{d} y}{\mathrm{~d} x}$ either by direct differentiation or dividing out first For correct expression oe. For drawing a conclusion For correct conclusion www
	Alternate scheme: Sketching graph Graph correct approaching asymptotes from both side Graph completely correct Explanation about no turning values Correct conclusion	B1 B1 B1 B1	A graph with no explanation can only score 2

3(i)	$\begin{aligned} & x_{1}=3.1 \Rightarrow x_{2}=3.13140, \\ & x_{3}=3.14148 \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & \\ & 2 \\ \hline \end{array}$	For correct x_{2} For correct x_{3}
(ii)	$\begin{aligned} & \mathrm{F}^{\prime}(\alpha) \approx \frac{e_{3}}{e_{2}}=\frac{0.00471}{0.01479}=0.318(0.31846) \\ & \mathrm{F}^{\prime}(\alpha)=\frac{1}{\alpha}=0.3178(0.31784) \end{aligned}$	M1 A1 B1 3	For dividing e_{3} by e_{2} For estimate of $\mathrm{F}^{\prime}(\alpha)$ For true $\mathrm{F}^{\prime}(\alpha)$ obtained from $\frac{\mathrm{d}}{\mathrm{~d} x}(2+\ln x)$ TMDP anywhere in (i) (ii) deduct 1 once (but answers must round to given values or A0)
(iii)		B1 B1 B1 3	For $y=x$ and $y=\mathrm{F}(x)$ drawn, crossing as shown For lines drawn to illustrate iteration (Min 2 horizontal and 2 vertical seen) For stating "staircase"

4(i)	$\begin{aligned} & x=r \cos \theta, y=r \sin \theta \\ & \Rightarrow r=\frac{a \cos \theta \sin \theta}{\cos ^{3} \theta+\sin ^{3} \theta} \\ & \text { for } 0 \leq \theta \leq \frac{1}{2} \pi \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \hline & 3 \\ \hline \end{array}$	For substituting for x and y For correct equation oe (Must be $r=$.....) For correct limits for θ (Condone <)
(ii)	$\begin{aligned} f\left(\frac{1}{2} \pi-\theta\right) & =\frac{a \cos \left(\frac{1}{2} \pi-\theta\right) \sin \left(\frac{1}{2} \pi-\theta\right)}{\cos ^{3}\left(\frac{1}{2} \pi-\theta\right)+\sin ^{3}\left(\frac{1}{2} \pi-\theta\right)} \\ & =\frac{a \sin \theta \cos \theta}{\sin ^{3} \theta+\cos ^{3} \theta} \end{aligned}$ $\mathrm{f}(\theta)=\mathrm{f}\left(\frac{1}{2} \pi-\theta\right) \Rightarrow \alpha=\frac{1}{4} \pi$	M1 A1 A1 3	N.B. answer given For replacing θ by $\left(\frac{1}{2} \pi-\theta\right)$ in their $\mathrm{f}(\theta)$ For correct simplified form. (Must be convincing) For correct reason for $\alpha=\frac{1}{4} \pi$
(iii)	$r=\frac{a \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}}{\left(\frac{1}{\sqrt{2}}\right)^{3}+\left(\frac{1}{\sqrt{2}}\right)^{3}}=\frac{1}{2} \sqrt{2} a$	B1 1	For correct value of r.oe
(iv)		B1 B1 2	Closed curve in 1st quadrant only, symmetrical about $\theta=\frac{1}{4} \pi$ Diagram showing $\theta=0, \frac{1}{2} \pi$ tangential at O

5(i)	$\begin{aligned} & x=\sin y \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} y}=\cos y \\ & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{1-\sin ^{2} y}}=\frac{1}{\sqrt{1-x^{2}}} \\ & +\sqrt{ } \text { taken since } \sin ^{-1} x \text { has positive gradient } \end{aligned}$	M1 A1 B1	For implicit diffn to $\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \frac{1}{\cos y}$ oe For using $\sin ^{2} y+\cos ^{2} y=1$ to obtain N.B. Answer given For justifying + sign
(ii)	$\begin{aligned} & \mathrm{f}(0)=0, \mathrm{f}^{\prime}(0)=1 \\ & \mathrm{f}^{\prime \prime}(x)=\frac{x}{\left(1-x^{2}\right)^{\frac{3}{2}}} \\ & \mathrm{f}^{\prime \prime \prime}(x)=\frac{\left(1-x^{2}\right)^{\frac{3}{2}}+3 x^{2}\left(1-x^{2}\right)^{\frac{1}{2}}}{\left(1-x^{2}\right)^{3}} \\ & \Rightarrow \mathrm{f}^{\prime \prime}(0)=0, \mathrm{f} \text { "'(0) }=1 \\ & \Rightarrow \sin ^{-1} x=x+\frac{1}{6} x^{3} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ 5	For correct values Use of chain rule to differentiate $\mathrm{f}^{\prime}(x)$ Use of quotient or product rule to differentiate f " (0). For correct values www, soi For correct series (allow 3!) www
	Alternative Method: $\begin{aligned} & \mathrm{f}(0)=0, \mathrm{f}^{\prime}(0)=1 \\ & \mathrm{f}^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}=\left(1-x^{2}\right)^{-1 / 2}=1+\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\ldots \\ & \mathrm{f}^{\prime \prime}(x)=x+\frac{3}{2} x^{3}+\ldots \\ & \mathrm{f}^{\prime \prime \prime}(x)=1+\frac{9}{2} x^{2}+\ldots \\ & \Rightarrow \mathrm{f}^{\prime}(0)=1, \mathrm{f} "(0)=0, \mathrm{f}{ }^{\prime \prime \prime}(0)=1 \\ & \Rightarrow \sin ^{-1} x=x+\frac{1}{6} x^{3} \end{aligned}$	B1 M1 M1 A1 A1	For correct values Correct use of binomial Differentiate twice Correct values Correct series
(iii)	$\begin{aligned} & \left(\sin ^{-1} x\right) \ln (1+x) \\ & =\left(x+\frac{1}{6} x^{3}\right)\left(x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}\right) \\ & =x^{2}-\frac{1}{2} x^{3}+\frac{1}{2} x^{4} \end{aligned}$	B1ft M1 A1 A1 4	For terms in both series to at least x^{3} f.t. from their (ii) multiplied together For multiplying terms to at least x^{3} For correct series up to $x^{3} \mathbf{w w w}$ For correct term in $x^{4} \mathbf{w w w}$

6(i)	$\begin{aligned} & I_{n}=\int_{0}^{1} x^{n}(1-x)^{\frac{3}{2}} \mathrm{~d} x \\ & =\left[-\frac{2}{5} x^{n}(1-x)^{\frac{5}{2}}\right]_{0}^{1}+\frac{2}{5} n \int_{0}^{1} x^{n-1}(1-x)^{\frac{5}{2}} \mathrm{~d} x \\ & \Rightarrow I_{n}=\frac{2}{5} n \int_{0}^{1} x^{n-1}(1-x)^{\frac{5}{2}} \mathrm{~d} x \\ & \Rightarrow I_{n}=\frac{2}{5} n \int_{0}^{1} x^{n-1}(1-x)(1-x)^{\frac{3}{2}} \mathrm{~d} x \\ & \Rightarrow I_{n}=\frac{2}{5} n I_{n-1}-\frac{2}{5} n I_{n} \\ & \Rightarrow I_{n}=\frac{2 n}{2 n+5} I_{n-1} \end{aligned}$	A1 A1 M1 A1 A1 6	For integrating by parts (correct way round) For correct first stage For splitting $(1-x)^{5 / 2}$ suitably For obtaining correct relation between I_{n} and I_{n-1} For correct result (N.B. answer given)
(ii)	$I_{0}=\left[-\frac{2}{5}(1-x)^{\frac{5}{2}}\right]_{0}^{1}=\frac{2}{5}$ $I_{3}=\frac{6}{11} I_{2}=\frac{6}{11} \times \frac{4}{9} I_{1}=\frac{6}{11} \times \frac{4}{9} \times \frac{2}{7} I_{0}$ $I_{3}=\frac{32}{1155}$	M1 M1 A1 A1 4	For evaluating I_{0} [OR I_{1} by parts] For using recurrence relation 3 [$O R$ 2] times (may be combined together) For 3 [OR 2] correct fractions For correct exact result

PTO for alternative schemes

7(iii)	Alternative method 1 By parts: $\begin{aligned} & I= \int_{0}^{\tanh k} \tanh ^{-1} x \mathrm{~d} x \\ & u=\tanh ^{-1} x \quad \mathrm{~d} v=\mathrm{d} x \\ & \mathrm{~d} u=\frac{1}{1-x^{2}} \mathrm{~d} x \quad v=x \\ & \Rightarrow I=\left[x \tanh ^{-1} x\right]_{0}^{\tanh k}-\int_{0}^{\tanh k} \frac{x}{1-x^{2}} \mathrm{~d} x \\ &=k \tanh k+\frac{1}{2}\left[\ln \left(1-x^{2}\right)\right]_{0}^{\tanh k} \\ &=k \tanh k+\frac{1}{2} \ln \left(1-\tanh ^{2} k\right) \\ &= k \tanh k+\frac{1}{2} \ln \left(\operatorname{sech}^{2} k\right) \\ &= k \tanh k+\ln (\operatorname{sech} k) \end{aligned}$	M1 A1 M1 A1	For integrating by parts (correct way round) For getting this far Dealing with the resulting integral
	Alternative method 2 By substitution Let $y=\tanh ^{-1} x \Rightarrow x=\tanh y$ $\Rightarrow \mathrm{d} x=\operatorname{sech}^{2} y \mathrm{~d} y$ When $x=0, y=0$ When $x=\tanh k, y=k$ $\begin{aligned} & \Rightarrow I=\int_{0}^{\tanh k} \tanh ^{-1} x \mathrm{~d} x=\int_{0}^{k} y \operatorname{sech}^{2} y \mathrm{~d} y \\ & \qquad \begin{array}{c} u=y \mathrm{~d} v=\operatorname{sech}^{2} y \mathrm{~d} y \\ \mathrm{~d} u=\mathrm{d} y \quad v=\tanh y \end{array} \\ & \Rightarrow I=[y \tanh y]_{0}^{k}-\int_{0}^{k} \tanh y \mathrm{~d} y \\ & =k \tanh k-\ln \cosh k \end{aligned}$	M1 A1 M1 A1	For substitution to obtain equivalent integral Correct so far For integration by parts (correct way round) Final answer

8(i)	$\begin{aligned} & x=\cosh ^{2} u \Rightarrow \mathrm{~d} u=2 \cosh u \sinh u \mathrm{~d} u \\ & \int \sqrt{\frac{x}{x-1}} \mathrm{~d} x=\int \frac{\cosh u}{\sinh u} 2 \cosh u \sinh u \mathrm{~d} u \\ & =\int 2 \cosh ^{2} u \mathrm{~d} u \\ & =\int(\cosh 2 u+1) \mathrm{d} u=\sinh u \cosh u+u \\ & =x^{\frac{1}{2}}(x-1)^{\frac{1}{2}}+\ln \left(x^{\frac{1}{2}}+(x-1)^{\frac{1}{2}}\right)(+c) \end{aligned}$	B1 M1 A1 M1 A1 M1 A1	For correct result For substituting throughout for x For correct simplified u integral For attempt to integrate $\cosh ^{2} u$ For correct integration For substituting for u For correct result oe as $\mathrm{f}(x)+\ln (\mathrm{g}(x))$
(ii)	$2 \sqrt{3}+\ln (2+\sqrt{3})$	$\begin{array}{lll} \hline \text { B1 } & \\ & 1 \end{array}$	
(iii)	$V=(\pi) \int_{1}^{4} \frac{x}{x-1} \mathrm{~d} x=(\pi)[x+\ln (x-1)]_{1}^{4}$ $V \rightarrow \infty$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \\ \hline & 3 \\ \hline \end{array}$	For attempt to find $\int \frac{x}{x-1} \mathrm{~d} x$ For correct integration (ignore π) For statement that volume is infinite (independent of M mark)

Question		Answer$f^{\prime}(x)=\frac{-3 \sin 3 x}{\cos 3 x}=-3 \tan 3 x \Rightarrow f^{\prime}(0)=0$$\mathrm{f}^{\prime \prime}(x)=-9 \sec ^{2} 3 x \Rightarrow \mathrm{f}^{\prime \prime}(0)=-9$$\Rightarrow \mathrm{f}(x)=-\frac{9}{2} x^{2}$		Guidance	
1			M1 A1 M1 A1	For differentiating $\mathrm{f}(x)$ twice (y^{\prime} as a function of a function) For correct $\mathrm{f}^{\prime}(0)$ and f " $(0) \mathbf{w w w}$ (soi by correct expansion) For use of Maclaurin soi For correct series (condone $a=-\frac{9}{2} x^{2}$)	$\begin{aligned} & \text { If } \mathrm{f}^{\prime \prime}(0)= \\ & \mathrm{f}^{\prime}(0)=\mathrm{f}(0) \\ & =0 \text { then } \\ & \text { M0 } \end{aligned}$
		ALT: $\ln (\cos 3 x)=\ln \left(1-\frac{1}{2}(3 x)^{2}\right)=-\frac{9}{2} x^{2}$	[4]	SC Use of standard cos and \ln series can earn second M1 A1	
			[4]		
2		$\begin{aligned} & =\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{(2 x-1)^{2}+4} \mathrm{~d} x \text { OR } \frac{1}{4} \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{\left(x-\frac{1}{2}\right)^{2}+1} \mathrm{~d} x \\ & =\frac{1}{2}\left[\frac{1}{2} \tan ^{-1} \frac{2 x-1}{2}\right]_{\frac{1}{2}}^{\frac{3}{2}} \text { OR } \frac{1}{4}\left[\tan ^{-1}\left(x-\frac{1}{2}\right)\right]_{\frac{1}{2}}^{\frac{3}{2}} \\ & =\frac{1}{4}\left(\tan ^{-1} 1-\tan ^{-1} 0\right)=\frac{1}{16} \pi \end{aligned}$	B1 M1 A1 M1 A1 [5]	For correct denominator (in 2nd case must include $\frac{1}{4}$) For integration to $k \tan ^{-1}(a x+b)$ or $k \ln \left(\frac{a x+b-c}{a x+b+c}\right)$ FT for $a x+b$ from their denominator For correct integration For substituting limits in any $\tan ^{-1}$ expression For correct value	

Question		Answer	Marks	Guidance	
3		$\begin{aligned} & \frac{2 x^{3}+x+12}{(2 x-1)\left(x^{2}+4\right)} \equiv A+\frac{B}{2 x-1}+\frac{C x+D}{x^{2}+4} \\ & 2 x^{3}+x+12 \equiv \\ & A(2 x-1)\left(x^{2}+4\right)+B\left(x^{2}+4\right)+(C x+D)(2 x-1) \\ & A=1, B=3 \\ & x^{3}: 2=2 A \quad x^{2}: 0=-A+B+2 C \\ & x^{1}: 1=8 A-C+2 D \quad x^{0}: 12=-4 A+4 B-D \\ & C=-1, D=-4 \\ & \Rightarrow 1+\frac{3}{2 x-1}+\frac{-x-4}{x^{2}+4} \end{aligned}$	B1 M1 B1 M1 A1A1 A1 [7]	For correct form soi (A can be $\mathrm{P} x+\mathrm{Q}$, but not 0) For multiplying out from their form For either A or B correct (dep on 1st B1) For equating at least 2 coefficients (or substitute two values for x or one of each) For C, D correct For correct expression WWW SC4 $\Rightarrow \frac{3}{2 x-1}+\frac{x^{2}-x}{x^{2}+4}$	
		ALT: Divide out as not proper $\begin{aligned} & \Rightarrow 1+\frac{x^{2}-7 x+16}{(2 x-1)\left(x^{2}+4\right)} \\ & =1+\frac{A}{2 x-1}+\frac{B x+C}{x^{2}+4} \\ & x^{2}-7 x+16 \equiv A\left(x^{2}+4\right)+(B x+C)(2 x-1) \\ & x^{2}: 1=A+2 B \quad x:-7=-B+2 C \\ & 1: 16=4 A-C \\ & \Rightarrow A=3, B=-1, C=-4 \\ & \Rightarrow 1+\frac{3}{2 x-1}+\frac{-x-4}{x^{2}+4} \end{aligned}$	B1 B1 M1 M1 A1 A1 A1	Divide out Writing in this form including 1 For multiplying out from their form For equating at least 2 coefficients (or substitute two values for x or one of each) B correct C correct For correct expression WWW	

Question		Answer	Marks	Guidance	
4	(i)	Given expression is sum of areas of rectangles of width $\frac{1}{n}$, heights $\mathrm{e}^{-1 / x}$ Given integral is area under the curve which is clearly greater	B1 B1 [2]	For identifying rectangle widths and heights For correct explanation of lower bound	
4	(ii)	Upper bound = $\frac{1}{n}\left(\mathrm{e}^{-n}+\mathrm{e}^{-\frac{n}{2}}+\mathrm{e}^{-\frac{n}{3}}+\cdots+\mathrm{e}^{-\frac{n}{n-1}}+\mathrm{e}^{-1}\right)$	M1 A1 [2]	For using n upper rectangles soi by e^{-n} and e^{-1} For correct expression	
4	(iii)	$\begin{aligned} & \text { Lower bound }=0.104(31) \\ & \text { Upper bound }=0.196(28) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	For correct value For correct value - accept 0.197	
4	(iv)	$\begin{aligned} & \frac{1}{n} \mathrm{e}^{-1}<0.001 \\ & \Rightarrow n>\frac{1000}{\mathrm{e}}=367.879 \\ & \Rightarrow \text { least } N=368 \end{aligned}$	B1 M1 A1 [3]	For a correct statement (includes <) For rearranging (ignore $<>=$ and allow RHS $=10^{ \pm m} \mathrm{e}^{ \pm 1}$) For correct value	
5	(i)	$\begin{aligned} & x_{n+1}=x_{n}-\frac{x_{n}^{3}-k}{3 x_{n}^{2}} \\ & \Rightarrow x_{n+1}=\frac{2 x_{n}^{3}+k}{3 x_{n}^{2}} \end{aligned}$	M1 A1 [2]	For correct $\frac{\mathrm{f}(x)}{\mathrm{f}^{\prime}(x)}$ seen $\left(x\right.$ or $\left.x_{n}\right)$ For simplification to AG (x_{n} and x_{n+1} required)	

Question		Answer	Marks	Guidance	
5	(ii)		B1 M1 A1 [3]	For correct curve with α (or $\sqrt[3]{k}$) and $-k$ marked For a suitable tangent shown with x_{1} and x_{2} marked such that $\left\|\alpha-x_{2}\right\|>\left\|\alpha-x_{1}\right\|$	Curve looks like cubic with one pt of inflection (g not nec. 0) at y axis
5	(iii)	$\begin{aligned} & \alpha=\sqrt[3]{100} \\ & x_{2}=4.66667 \\ & x_{3}=4.64172 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	For correct α (Condone $x=\ldots$...) For correct x_{2} (to at least 5dp) For correct x_{3} (to at least 5dp)	
5	(iv)	$e_{1}=-0.35841, \quad e_{2}=-0.02508, \quad e_{3}=-0.00013$ $\frac{e_{2}^{3}}{e_{1}^{2}}=-0.00012$	M1 A1 A1 [3]	For calculating e_{1}, e_{2}, e_{3} from α or something better than x_{3} All correct to 5 dp For obtaining -0.00012 SC2 for consistently without - ve signs	
6	(i)	$\begin{aligned} & \cos y=x \Rightarrow-\sin y \frac{\mathrm{~d} y}{\mathrm{~d} x}=1 \\ & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{\sin y}=-\frac{1}{\sqrt{1-x^{2}}} \\ & - \text { sign since } \frac{\mathrm{d} y}{\mathrm{~d} x}<0 \text { (e.g. by graph) } \end{aligned}$	M1 A1 B1 [3]	For differentiating $\cos y$ wrt x For using $\cos ^{2} y+\sin ^{2} y=1$ to obtain AG For justification of $+\sqrt{ }$ taken SC1 if in fractions $\frac{14}{3}$ and $\frac{2047}{441}$	

Question		Answer	Marks	Guidance	
6	(ii)	$\begin{aligned} & \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =-\frac{-2 x}{\sqrt{1-\left(1-x^{2}\right)^{2}}} \\ & =\frac{2 x}{\sqrt{2 x^{2}-x^{4}}}=\frac{2}{\sqrt{2-x^{2}}} \\ \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} & =2 .-\frac{1}{2} \cdot-2 x\left(2-x^{2}\right)^{-\frac{3}{2}} \end{aligned}=\frac{2 x}{\left(2-x^{2}\right)^{\frac{3}{2}}} \\ & \Rightarrow\left(2-x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{2 x}{\sqrt{2-x^{2}}}=x \frac{\mathrm{~d} y}{\mathrm{~d} x} \end{aligned}$	M1 A1 A1 M1 A1 [5]	For differentiating $\cos ^{-1}\left(1-x^{2}\right)$ (as a function of a function) For correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (unsimplified) For correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (simplified) For differentiating $\frac{\mathrm{d} y}{\mathrm{~d} x}$ using chain rule correctly (or product or quotient if y^{\prime} is wrong) For verification of AG	
7	(i)	$\begin{aligned} & x=\sinh y=\frac{\mathrm{e}^{y}-\mathrm{e}^{-y}}{2} \\ & \Rightarrow \mathrm{e}^{2 y}-2 x \mathrm{e}^{y}-1=0 \Rightarrow \mathrm{e}^{y}=x \pm \sqrt{x^{2}+1} \\ & \text { reject }-\operatorname{sign} \text { as } \mathrm{e}^{y}>0 \Rightarrow y=\ln \left(x+\sqrt{x^{2}+1}\right) \end{aligned}$	M1 A1 A1 [3]	For correct expression for sinh y and attempt to obtain quadratic For correct solution(s) for e^{y} For justification of + sign to AG	
		Alt: $\sinh y+\cosh y=\mathrm{e}^{y}$ $\sinh y=x \Rightarrow \cosh y= \pm \sqrt{x^{2}+1}$ reject -ve sign as $\mathrm{e}^{y}>0$ $\Rightarrow \mathrm{e}^{y}=x+\sqrt{x^{2}+1} \Rightarrow y=\ln \left(x+\sqrt{x^{2}+1}\right)$			

Question		Answer		Guidance	
7	(ii)	$\begin{aligned} & \ln \left(x+\sqrt{x^{2}+1}\right)-\ln \left(x+\sqrt{x^{2}-1}\right)=\ln 2 \\ & \Rightarrow \frac{x+\sqrt{x^{2}+1}}{x+\sqrt{x^{2}-1}}=2 \\ & \Rightarrow \sqrt{x^{2}+1}-2 \sqrt{x^{2}-1}=x \\ & \Rightarrow 4 x^{2}-3=4 \sqrt{x^{4}-1} \\ & \Rightarrow 24 x^{2}=25 \Rightarrow x=\frac{5}{\sqrt{24}}\left(=\frac{5}{12} \sqrt{6}\right) \end{aligned}$	M1 A1 M1 A1 A1 [5]	For stating both ln expressions and attempting to exponentiate For correct equation AG For attempting to square once For a correct equation with $\sqrt{ }$ as subject For correct x and no others isw	Removing lns is not an attempt to exponentiate
8	(i)	$\begin{aligned} & 2 \cos ^{2} \alpha=2 \sin 2 \alpha=4 \sin \alpha \cos \alpha \\ & \Rightarrow \tan \alpha=\frac{1}{2} \end{aligned}$	M1 A1 [2]	For equation in $\cos \alpha$ and $\sin \alpha$ (only - ie dealing with $\sin 2 \alpha$ leading to $\mathbf{A G}(\theta$ may be used instead of α) SR Allow verification only if exact	
8	(ii)	$\begin{aligned} & \text { Area }=\frac{1}{2} \int_{0}^{\alpha} r_{2}^{2} \mathrm{~d} \theta+\frac{1}{2} \int_{\alpha}^{\frac{1}{2} \pi} r_{1}^{2} \mathrm{~d} \theta \\ & =\frac{1}{2} \int_{0}^{\alpha} 2 \sin 2 \theta \mathrm{~d} \theta+\frac{1}{2} \int_{\alpha}^{\frac{1}{2} \pi} 1+\cos 2 \theta \mathrm{~d} \theta \\ & =\left[-\frac{1}{2} \cos 2 \theta\right]_{0}^{\alpha}+\left[\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right]_{\alpha}^{\frac{1}{2} \pi} \\ & =\left(-\frac{1}{2} \cos 2 \alpha+\frac{1}{2}\right)+\left(\frac{1}{4} \pi-\frac{1}{2} \alpha-\frac{1}{4} \sin 2 \alpha\right) \\ & =\left(-\frac{1}{2}\left(1-2 \sin ^{2} \alpha\right)+\frac{1}{2}\right)+\left(\frac{1}{4} \pi-\frac{1}{2} \alpha-\frac{1}{2} \sin \alpha \cos \alpha\right) \\ & =\frac{1}{5}+\frac{1}{4} \pi-\frac{1}{2} \alpha-\frac{1}{2} \cdot \frac{1}{\sqrt{5}} \cdot \frac{2}{\sqrt{5}} \\ & =\frac{1}{4} \pi-\frac{1}{2} \alpha \end{aligned}$	M1 M1 M1 A1 A1 M1 A1 [7]	For both integrals added with limits soi Allow θ for α, and reversal of r^{2} terms For using $2 \cos ^{2} \theta=1+\cos 2 \theta$ in 2nd integral For $k \cos 2 \theta$ as first integrated term For correct first area For correct second area For using Pythagoras to find $\sin \alpha$ or $\cos \alpha$ OR t formula for $\cos 2 \alpha$ or $\sin 2 \alpha$ For simplification to AG	

Question		Answer	Marks	Guidance	
9	(i)	$\begin{aligned} & \tanh (\ln n)=\frac{\mathrm{e}^{\ln n}-\mathrm{e}^{-\ln n}}{\mathrm{e}^{\ln n}+\mathrm{e}^{-\ln n}} \\ & =\frac{n-\frac{1}{n}}{n+\frac{1}{n}}=\frac{n^{2}-1}{n^{2}+1} \end{aligned}$	M1 A1 [2]	For definition of $\tanh (\ln n)$ seen Or working with $\tanh (\ln n)=x$, definition of $\tanh ^{-1} x$ seen For simplification to AG $\mathbf{S C} 1 \tanh (\ln n)=\frac{\mathrm{e}^{\ln n}-\mathrm{e}^{-\ln n}}{\mathrm{e}^{\ln n}+\mathrm{e}^{-\ln n}}=\frac{\mathrm{e}^{2 \ln n}-1}{\mathrm{e}^{2 \ln n}+1}=\frac{n^{2}-1}{n^{2}+1}$	
9	(ii)	$\begin{aligned} & I_{n}-I_{n-2}=\int_{0}^{\ln 2}\left(\tanh ^{n} u-\tanh ^{n-2} u\right) \mathrm{d} u \\ & =\int_{0}^{\ln 2} \tanh ^{n-2} u\left(\tanh ^{2} u-1\right) \mathrm{d} u=-\int_{0}^{\ln 2} \tanh ^{n-2} u \operatorname{sech}^{2} u \mathrm{~d} u \\ & \Rightarrow I_{n}-I_{n-2}=-\left[\frac{1}{n-1} \tanh ^{n-1} u\right]_{0}^{\ln 2} \\ & \Rightarrow I_{n}-I_{n-2}=-\frac{1}{n-1}\left(\frac{3}{5}\right)^{n-1} \end{aligned}$	M1 A1 A1 [3]	For factorising and replacing $\left(\tanh ^{2} u-1\right)$ by $\pm \operatorname{sech}^{2} u$ (or similarly considering I_{n}) For correct integrated term For simplification to AG	
9	(iii)	$\begin{aligned} & I_{1}=\int_{0}^{\ln 2} \tanh u d u=[\ln \cosh u]_{0}^{\ln 2} \\ & =\ln (\cosh (\ln 2))=\ln \frac{\mathrm{e}^{\ln 2}+\mathrm{e}^{-\ln 2}}{2}=\ln \frac{5}{4} \end{aligned}$ $I_{3}=I_{1}-\frac{1}{2}\left(\frac{3}{5}\right)^{2}=-\frac{9}{50}+\ln \frac{5}{4}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1ft } \\ \text { [4] } \end{gathered}$	For integration to $k \ln \begin{aligned} & \cosh u \\ & \sinh u\end{aligned}$ For simplifying ${ }_{\sinh }^{\text {cosh }}(\ln 2)$ For correct value of I_{1} For correct I_{3}. FT from I_{1} SC $I_{3}=-\frac{9}{50}+\ln (\cosh (\ln 2))$ M1 B1ft	
9	(iv)	$\begin{aligned} & \left(I_{n}-I_{n-2}\right)+\left(I_{n-2}-I_{n-4}\right)+\ldots+\left(I_{3}-I_{1}\right) \\ & =I_{n}-I_{1}=-\left(\frac{1}{n-1}\left(\frac{3}{5}\right)^{n-1}+\frac{1}{n-3}\left(\frac{3}{5}\right)^{n-3}+\ldots+\frac{1}{2}\left(\frac{3}{5}\right)^{2}\right) \\ & \Rightarrow \frac{1}{2}\left(\frac{3}{5}\right)^{2}+\frac{1}{4}\left(\frac{3}{5}\right)^{4}+\frac{1}{6}\left(\frac{3}{5}\right)^{6}+\ldots=I_{1}=\ln \frac{5}{4} \end{aligned}$	M1 A1ft [2]	For attempting to sum equations of the form of (ii) and cancelling soi For correct answer ft from I_{1}	

Alternative to Q9(ii)

Question		Answer	Marks	Guidance	
2	(i)	$\begin{aligned} & r=0 \Rightarrow \cos \theta=0, \sin 2 \theta=0 \\ & \Rightarrow \theta=0, \frac{1}{2} \pi \end{aligned}$	M1 A1 [2]	For $r=0$ (soi) and attempt to solve for θ For both values and no others (ignore values outside range)	
2	(ii)	$\begin{aligned} & \frac{\mathrm{d} r}{\mathrm{~d} \theta}=-\sin \theta \sin 2 \theta+2 \cos 2 \theta \cos \theta \\ & =0 \end{aligned}$ Alternatively: $\begin{aligned} & r=2 \cos ^{2} \theta \sin \theta \Rightarrow \frac{\mathrm{~d} r}{\mathrm{~d} \theta}=2 \cos ^{3} \theta-4 \cos \theta \sin ^{2} \theta \\ & \Rightarrow 2 \sin ^{2} \theta \cos \theta=2\left(1-2 \sin ^{2} \theta\right) \cos \theta \\ & \Rightarrow \sin \theta=\frac{1}{\sqrt{3}}\left(\cos \theta=\frac{\sqrt{2}}{\sqrt{3}}, \tan \theta=\frac{1}{\sqrt{2}}\right) \\ & \Rightarrow r=\frac{4}{3 \sqrt{3}}=\frac{4}{9} \sqrt{3} \end{aligned}$	M1 A1 A1 A1 [4]	For attempt to find $\frac{\mathrm{d} r}{\mathrm{~d} \theta}$ using product rule For correct $\frac{\mathrm{d} r}{\mathrm{~d} \theta}$ set $=0$ soi For correct value of $\sin \theta(\mathbf{O R} \cos \theta O R \tan \theta)$ or decimal equivalent; $\sin \theta=0.546$ or $\cos \theta=0.816$ or $\tan \theta=0.707$ For correct r or anything that rounds to 0.77	
2	(iii)	$\begin{aligned} & x=r \cos \theta, y=r \sin \theta \\ & \Rightarrow r=\frac{x}{r} \cdot 2 \frac{y}{r} \frac{x}{r} \\ & \Rightarrow\left(x^{2}+y^{2}\right)^{2}=2 x^{2} y \end{aligned}$	M1 M1 A1 [3]	For substituting $x=r \cos \theta$ OR $y=r \sin \theta$ For $r^{2}=x^{2}+y^{2}$ soi For a correct cartesian equation Any equivalent form without fractions	

Question		Answer		Guidance	
3	(i)	$\begin{aligned} & \tanh 2 x \equiv \frac{\sinh 2 x}{\cosh 2 x} \equiv \frac{2 \sinh x \cosh x}{\cosh ^{2} x+\sinh ^{2} x} \\ & \equiv \frac{2 \tanh x}{1+\tanh ^{2} x} \end{aligned}$	M1 A1 [2]	For $\frac{\sinh 2 x}{\cosh 2 x}$ and use double angle formulae For division by $\cosh ^{2} x$ seen	N.B. $\operatorname{Tanh}(A+B)$ not in formula book
3	(ii)	$\begin{aligned} & \frac{10 t}{\left(t^{2}+1\right)}=(1+6 t) \\ & \Rightarrow 6 t^{3}+t^{2}-4 t+1=0 \\ & \Rightarrow(t+1)(3 t-1)(2 t-1)=0 \\ & \Rightarrow t=(-1), \frac{1}{3}, \frac{1}{2} \\ & x=\frac{1}{2} \ln \frac{1+t}{1-t} \Rightarrow x=\frac{1}{2} \ln 2, \frac{1}{2} \ln 3 \end{aligned}$	M1 A1 M1 A1 M1 A1 [6]	For using (i) to obtain equation in t. Correct cubic equation Attempt to solve cubic (calculator OK) Solution. Ignore any extra values at this stage For using \ln form for $\tanh ^{-1}$ Correct 2 values (only) oe	
		Alternative: M1 $\begin{aligned} & \mathrm{e}^{4 x}-5 \mathrm{e}^{2 x}+6=0 \\ & \Rightarrow\left(\mathrm{e}^{2 x}-2\right)\left(\mathrm{e}^{2 x}-3\right)=0 \\ & \Rightarrow \mathrm{e}^{2 x}=2, \quad 3 \\ & \Rightarrow 2 x=\ln 2, \ln 3 \\ & \Rightarrow x=\frac{1}{2} \ln 2, \quad \frac{1}{2} \ln 3 \end{aligned}$		Use exponentials to obtain a quadratic in $\mathrm{e}^{2 \bar{x}}$ Correct Solve quadratic Soln Take logs	

Questio		Answer	Marks	Guidance	
4	(i)	$\begin{aligned} & x_{2}=1.3869 \ldots \\ & x_{3}=1.3938 \end{aligned}$	B1 B1 B1 [3]	For correct value (4 d.p. or better) For correct value. For sketch showing staircase towards α. (Vertical lines do not need to be labelled)	
4	(ii)		B1 B1 [2]	For sketch like $y=\frac{1}{2}\left(x^{4}-1\right)$ and $y=x$ (curve or continuation of curve cuts - y axis.) For sketch showing staircase away from α.("Away" means labelling or arrows required.) Labelling means x_{1}, x_{2}, \ldots in right place or numeric values.	
4	(iii)	$\begin{aligned} & x_{n+1}=x_{n}-\frac{x_{n}^{4}-2 x_{n}-1}{4 x_{n}^{3}-2} \\ & 1.35 \rightarrow 1.398268 \\ & \rightarrow 1.395348 \rightarrow 1.395337 \\ & \Rightarrow 1.3953 \end{aligned}$	M1 A1 A1 A1 [4]	For deriving the iterative formula For correct formula For 1st value For correct $4 \mathrm{dp} \alpha$ with 2 iterates equal to 4 dp. (i.e. last two iterates agree to 4dp) www	

Question		Answer	Marks	Guidance	
5	(i)	$\begin{aligned} & \mathrm{f}^{\prime}(x)=\frac{1}{\sqrt{1+x^{2}}}+\frac{1}{\sqrt{1+\frac{1}{x^{2}}}} \cdot \frac{-1}{x^{2}} \\ & =\frac{1}{\sqrt{1+x^{2}}}\left(1-\frac{1}{x}\right) \\ & =0 \Rightarrow x=1 \end{aligned}$ $f(1)=2 \sinh ^{-1} 1=2 \ln (1+\sqrt{2})$	M1 B1 M1 A1 A1 [5]	For attempt to differentiate using chain rule. First term correct For attempt to solve their $\mathrm{f}^{\prime}(x)=0$ For correct value of x (ignore $x=-1$)www For correct value obtained WWW AG	
5	(ii)	$\{\mathrm{f}(x) \geqslant 2 \ln (1+\sqrt{2}), \mathrm{f}(x) \leqslant-2 \ln (1+\sqrt{2})\}$	B1 B1 B1 [3]	For correct shape in 3rd quadrant only(condone inclusion of the 1st quadrant part given) For one part of range For other part of range SC B1 Both ranges correct but < and > used	

Question		Answer	Marks	Guidance	
6	(i)	$\begin{aligned} & I_{n}=\left[-x^{n} \cos x\right]_{0}^{\pi}+n \int_{0}^{\pi} x^{n-1} \cos x d x \\ & =\pi^{n}+n\left\{\left[x^{n-1} \sin x\right]_{0}^{\pi}-(n-1) \int_{0}^{\pi} x^{n-2} \sin x \mathrm{~d} x\right\} \\ & \Rightarrow I_{n}=\pi^{n}-n(n-1) I_{n-2} \end{aligned}$	M1 A1 M1 A1 A1 [5]	For attempt to integrate by parts For correct result before limits For attempt at second integration by parts For correct result before limits For correct result www AG	
6	(ii)	$\begin{aligned} & I_{1}=[-x \cos x]_{0}^{\pi}+\int_{0}^{\pi} \cos x \mathrm{~d} x \\ & \Rightarrow I_{1}=\pi+[\sin x]_{0}^{\pi}=\pi \\ & I_{3}=\pi^{3}-6 I_{1}, I_{5}=\pi^{5}-20 I_{3} \\ & \Rightarrow I_{5}=\pi^{5}-20 \pi^{3}+120 \pi \end{aligned}$	M1 A1 M1 A1 [4]	For integrating by parts for I_{1} For correct I_{1} SC B1 $I_{1}=\pi$ with no working For substituting $n=3$ or 5 in reduction formula For correct result	

Question		Answer	Marks	Guidance	
7	(i)	$\begin{aligned} & a=2, \quad b=n \\ & c=1, \quad d=n-1 \end{aligned}$	B1 B1 B1 [3]	for any 2 correct for the third correct for all four correct. Allow values inserted in series. SC treat $a=\frac{1}{2}$ etc as MR -1 once	
7	(ii)	$\begin{aligned} & \int_{1}^{n} \frac{1}{x} \mathrm{~d} x=\ln n \\ & 1+\frac{1}{2}+\ldots+\frac{1}{n}<1+\ln n \\ & \Rightarrow \mathrm{f}(n)<1 \text { (upper bound) } \\ & \Rightarrow \mathrm{f}(n)>\frac{1}{n} \text { (lower bound) } \end{aligned}$	B1 M1 A1 A1 [4]	For integral evaluated soi (Definite integral between 1 and n) For adding 1 OR $\frac{1}{n}$ to series For correct upper bound For correct lower bound	
7	(iii)	$\begin{aligned} & \mathrm{f}(n+1)-\mathrm{f}(n)=\frac{1}{n+1}-\ln (n+1)+\ln n \\ & =\frac{1}{n+1}-\ln \left(\frac{n+1}{n}\right) \approx \frac{1}{n+1}-\left(\frac{1}{n}-\frac{1}{2 n^{2}}\right) \\ & \approx \frac{1}{n+1}-\frac{2 n-1}{2 n^{2}} \\ & \approx-\frac{n-1}{2 n^{2}(n+1)} \end{aligned}$	B1 M1 M1 A1 A1 [5]	For correct expression For combining ln terms For attempt to expand $\ln \left(1+\frac{1}{n}\right)$ Correct expansion of $\ln \left(1+\frac{1}{n}\right)$ For correct expression AG	Any expansion of $\ln (1+n)$ oe is 0

Alternative answer to 7(iii)

Question		Answer	Marks	Guidance	
8	(i)	$\begin{aligned} & \mathrm{q}(x)=x+2 \\ & y=\frac{A}{x+2}+\frac{1}{2} x+1 \\ & \left(-1, \frac{17}{2}\right) \Rightarrow A=8 \\ & y=\frac{\frac{1}{2} x^{2}+2 x+10}{x+2} \Rightarrow \mathrm{p}(x)=\frac{1}{2} x^{2}+2 x+10 \end{aligned}$	B1 M1 A1 A1 [4]	For correct $\mathrm{q}(x)$ soi oe For expressing y in this form. Allow $c x+d$ for A For correct A For correct $\mathrm{p}(x)$ Allow equal multiples of $\mathrm{p}(x)$ and $\mathrm{q}(x)$	
		$\begin{align*} & \text { Alternative: } \mathrm{q}(x)=x+2 \\ & y=\frac{a x^{2}+b x+c}{\mathrm{q}(x)}=a x+(b-2 a)+\frac{c-2 b+4 a}{x+2} \mathrm{M} 1 \\ & y=\frac{1}{2} x+1 \Rightarrow a=\frac{1}{2}, b=2 \\ & \left(-1, \frac{17}{2}\right) \Rightarrow c-2 b+4 a=8 \Rightarrow c=10 \tag{A1} \end{align*}$		For correct $q(x)$ soi oe For division by their $\mathrm{q}(x)$ For correct a and b oe For correct $c \mathbf{~ o e}$	$1^{\text {st }}$ line of division and $1^{\text {st }}$ term in quotient should be seen for correct method
8	(ii)	$\begin{aligned} & \frac{1}{2} x^{2}+(2-y) x+10-2 y=0 \\ & b^{2}-4 a c \geqslant 0 \Rightarrow(2-y)^{2} \geqslant 2(10-2 y) \\ & \Rightarrow y^{2} \geq 16 \Rightarrow\{y \leq-4, y \geq 4\} \end{aligned}$ (pto for alternative)	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	For attempt to rearrange as quadratic in x For use of $b^{2}-4 a c$ (\leq or \geq or $=$ or $<$ or $>$) For critical values ± 4 For correct range. (Must be \leq and \geq) www	
8	(iii)	$\begin{aligned} & \left(\frac{1}{2} x+1\right)^{2}=\frac{\frac{1}{2} x^{2}+2 x+10}{x+2} \text { OR } y^{2}=\frac{4}{y}+y \\ & \Rightarrow x^{3}+4 x^{2}+4 x-32=0 \text { OR } y^{3}-y^{2}-4=0 \\ & \Rightarrow(2,2) \end{aligned}$	$\begin{aligned} & \hline \text { B1ft } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [4] } \\ & \hline \end{aligned}$	For a correct equation derived from intersection of C_{2} with $y=\frac{1}{2} x+1$ FT from (i) For obtaining a cubic Correct cubic Coordinates correct www	

Alternative to 8(ii)

Question			Answer	Marks	Guidanc	
8	(ii)		$\begin{aligned} & y=\frac{\frac{1}{2} x^{2}+2 x+10}{x+2} \\ & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{(x+2)(x+2)-\left(\frac{1}{2} x^{2}+2 x+10\right)}{(x+2)^{2}} \\ & =0 \text { when }(x+2)(x+2)=\left(\frac{1}{2} x^{2}+2 x+10\right) \\ & \Rightarrow \frac{1}{2} x^{2}+2 x-6=0 \Rightarrow x^{2}+4 x-12=0 \\ & \Rightarrow(x+6)(x-2)=0 \\ & \Rightarrow x=2, y=4 \\ & \{y \leq-4, y \geq 4\} \end{aligned}$	M1 M1 A1 A1	Diffn using quotient rule Attempt to find soln using $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ For correct range. (Must be \leq and \geq) www	
			Alternatively: $\begin{aligned} & y=\frac{1}{2} x+1+\frac{8}{x+2} \\ & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2}-\frac{8}{(x+2)^{2}} \\ & =0 \text { when } \frac{1}{2}-\frac{8}{(x+2)^{2}} \Rightarrow(x+2)^{2}=16 \\ & \Rightarrow x+2= \pm 4 \Rightarrow x=2 \text { or }-6 \\ & \Rightarrow y=4 \text { or }-4 \\ & \{y \leq-4, \quad y \geq 4\} \end{aligned}$		Diffn using chain rule Attempt to find soln using $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ For correct range. (Must be \leq and \geq) www	

Question		Answer	Marks	Guidance	
2	(i)	$\begin{aligned} & x=1 \\ & y=\frac{x^{2}-3}{x-1}=\frac{(x-1)(x+1)-2}{x-1}=x+1\left[-\frac{2}{x-1}\right] \\ & \Rightarrow y=x+1 \end{aligned}$	B1 M1 A1 [3]	Or long division with quotient $x+\ldots$ Must be stated	
2	(ii)	$\begin{aligned} & (0,3) \\ & (\sqrt{3}, 0) \text { and }(-\sqrt{3}, 0) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	All three	Allow when $\mathrm{x}=0, \mathrm{y}=3$, etc but do NOT allow $y=3$, etc
2	(iii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x(x-1)-\left(x^{2}-3\right)}{(x-1)^{2}}=\frac{x^{2}-2 x+3}{(x-1)^{2}} \\ & =\frac{(x-1)^{2}+2}{(x-1)^{2}}>0 \text { for all } x . \end{aligned}$ So no turning points.	M1 A1 A1 [3]	Differentiate Gradient function Conclusion	Alternative method: Diffn final expression from (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=1+\frac{2}{(x-1)^{2}}$ >1 so no turning points. Or " $b^{2}-4 \mathrm{ac}$ " $=-8<0$ so no roots.
2	(iv)		B1 B1 B1 [3]	Correct shape going through axes at correct points which must be stated. Correct asymptotes included Approaches correct asymptotes correctly	Allow omission of $(0,3)$ if not in (ii). Oblique asymptote can be $y=x+c$ with $c \neq 1$

Question		Answer	Marks	Guidance	
4	(i)	$I_{n}=\int_{0}^{1} x^{n} \cdot \mathrm{e}^{2 x} \mathrm{~d} x$ $\begin{aligned} \text { Set } u & =x^{n} \quad \mathrm{~d} u=n x^{n-1} \mathrm{~d} x \\ \qquad \mathrm{~d} v & =\mathrm{e}^{2 x} \mathrm{~d} x \quad v=\frac{1}{2} \mathrm{e}^{2 x} \\ \Rightarrow I_{n} & =\int_{0}^{1} x^{n} \mathrm{e}^{2 x} \mathrm{~d} x=\left[\frac{1}{2} x^{n} \mathrm{e}^{2 x}\right]_{0}^{1}-\frac{1}{2} n \int_{0}^{1} x^{n-1} \mathrm{e}^{2 x} \mathrm{~d} x \\ I_{n} & =\frac{1}{2} \mathrm{e}^{2}-\frac{1}{2} n I_{n-1} \end{aligned}$	M1 A1 A1 A1 [4]	Integration by parts Correct way round and correct diffn Indefinite form acceptable Using limits	
4	(ii)	$\begin{aligned} & I_{0}=\int_{0}^{1} \mathrm{e}^{2 x} \mathrm{~d} x=\frac{1}{2}\left[\mathrm{e}^{2 x}\right]_{0}^{1}=\frac{1}{2}\left(\mathrm{e}^{2}-1\right) \\ & I_{1}=\frac{1}{2} \mathrm{e}^{2}-\frac{1}{2} I_{0}=\frac{1}{2} \mathrm{e}^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\mathrm{e}^{2}-1\right)\right)=\frac{1}{4} \mathrm{e}^{2}+\frac{1}{4} \\ & I_{2}=\frac{1}{2} \mathrm{e}^{2}-I_{1}=\frac{1}{2} \mathrm{e}^{2}-\left(\frac{1}{4} \mathrm{e}^{2}+\frac{1}{4}\right)=\frac{1}{4} \mathrm{e}^{2}-\frac{1}{4} \\ & I_{3}=\frac{1}{2} \mathrm{e}^{2}-\frac{3}{2} I_{2}=\frac{1}{2} \mathrm{e}^{2}-\frac{3}{2}\left(\frac{1}{4} \mathrm{e}^{2}-\frac{1}{4}\right)=\frac{1}{8} \mathrm{e}^{2}+\frac{3}{8} \end{aligned}$	M1 A1 M1 A1 [4]	Attempt to find I_{0} or I_{1}. Using this to progress, dep	

Question		Answer$\begin{aligned} & \mathrm{f}^{\prime}(x)=-\sin x \cdot e^{-x}+\cos x \cdot e^{-x} \\ & \Rightarrow \mathrm{f}^{\prime}(0)=1 \end{aligned}$$\mathrm{f}(0)=0$	Marks M1 A1 A1 [3]	Guidance	
5	(i)			Diffn using product correctly. For both values www	
5	(ii)	$\begin{aligned} & \mathrm{f}^{\prime}(x)=\cos x . e^{-x}-\sin x . e^{-x}=\cos x \cdot e^{x}-\mathrm{f}(x) \\ & \mathrm{f}^{\prime \prime}(x)=-\mathrm{f}^{\prime}(x)-\cos x . e^{-x}-\mathrm{f}(x) \\ & =-\mathrm{f}^{\prime}(x)-\mathrm{f}^{\prime}(x)-\mathrm{f}(x)-\mathrm{f}(x) \\ & \mathrm{f}^{\prime \prime}(x)=-2 \mathrm{f}^{\prime}(x)-2 \mathrm{f}(x) \text { OR }-2 \cos x . \mathrm{e}^{-x} \end{aligned}$ Showing the two equal $f^{\prime \prime}(0)=-2$	M1 A1 A1 A1 [4]	Diffn	
5	(iii)	$\begin{aligned} & \mathrm{f} \text { " }(x)=-2 \mathrm{f}^{\prime}(x)-2 \mathrm{f}(x) \\ & \Rightarrow \mathrm{f}^{\prime \prime \prime}(x)=-2 \mathrm{f}^{\prime \prime}(x)-2 \mathrm{f}^{\prime}(x) \quad \text { oe } \\ & \Rightarrow \mathrm{f}{ }^{\prime \prime}(0)=4-2=2 \end{aligned}$	B1 B1 [2]	Not involving trig or exp fns	$\begin{aligned} & =-\mathrm{f}^{\prime}+2 \mathrm{f} \\ & \text { Or } 2 \mathrm{f}^{\prime}+4 \mathrm{f} \end{aligned}$
5	(iv)	$\mathrm{f}(\mathrm{x})=\mathrm{x}-\mathrm{x}^{2}+\frac{x^{3}}{3}$	M1 A1 [2]		
		Alternative: Write down correct series expansion for e^{-x} and $\sin x$ and multiply	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		

Question		Answer	Marks	Guidance	
7	(i)	P is at $r=5, \theta=\frac{\pi}{4}$	B1 B1 B1 B1 [4]	Enclosed loop with axes tangential $\theta=\frac{\pi}{4}$ is a line of symmetry drawn and named For both	Ignore anything in other quadrants
7	(ii)	$\begin{aligned} & \text { Area }=\frac{1}{2} \int_{0}^{\pi / 2} r^{2} \mathrm{~d} \theta=\frac{1}{2} \int_{0}^{\pi / 2} 25 \sin ^{2} 2 \theta \mathrm{~d} \theta \\ & =\frac{25}{4} \int_{0}^{\pi / 2}(1-\cos 4 \theta) \mathrm{d} \theta=\frac{25}{4}\left[\theta-\frac{1}{4} \sin 4 \theta\right]_{0}^{\pi / 2} \\ & =\frac{25}{4}\left(\left(\frac{\pi}{2}-0\right)-(0)\right)=\frac{25 \pi}{8} \end{aligned}$	M1 M1 A1 [3]	Correct formula with r substituted. Correct method of integration including limits WWW	
7	(iii)	Equation is of the form $x+y=\mathrm{c}$ P is $\left(\frac{5}{\sqrt{2}}, \frac{5}{\sqrt{2}}\right) \mathbf{o e}$ $\Rightarrow x+y=5 \sqrt{2}$	B1 B1 B1 [3]	Ft. $x+y=c$ where c comes from their P.	
7	(iv)	$\begin{aligned} & r=5 \sin 2 \theta=10 \sin \theta \cos \theta \\ & \Rightarrow r^{2}=100 \sin ^{2} \theta \cos ^{2} \theta=100\left(\frac{y}{r}\right)^{2}\left(\frac{x}{r}\right)^{2} \\ & \Rightarrow\left(x^{2}+y^{2}\right)^{3}=100 x^{2} y^{2} \end{aligned}$	M1 M1 A1 [3]	Square and convert r^{2} Substitute for r and θ NB Answer given	

Question			Answer$\begin{aligned} & x_{1}=4.15, \quad x_{2}=4.1474 \ldots \\ & x_{3}=4.1465 \ldots ., \quad x_{4}=4.1463 \ldots \\ & \beta=4.146 \end{aligned}$	Marks M1 A1 [2]	Guidance	
8	(i)	(a)			Using iterative formula at least once using at least 4dp www	All iterates must be seen
8	(i)	(b)	Staircase diagram will always move to upper root	B1 B1 B1 [3]	Sketch showing an example $x_{1}>\alpha$ Example with $x_{1}<\alpha$ Statement Dep on 1st two B	Ignore any statement when $x_{1}>\beta$
8	(ii)	(a)	$\begin{aligned} & \ln (x-1)=x-3 \Rightarrow \ln (x-1)-(x-3)=0 \\ & \begin{aligned} \Rightarrow \mathrm{f}(x) & =\ln (x-1)-(x-3) \\ \Rightarrow \mathrm{f}^{\prime}(x) & =\frac{1}{x-1}-1 \\ \Rightarrow x_{n+1} & =x_{n}-\frac{\ln \left(x_{n}-1\right)-\left(x_{n}-3\right)}{\frac{1}{x_{n}-1}-1} \\ & =x_{n}-\frac{\left(x_{n}-1\right)\left(\ln \left(x_{n}-1\right)-\left(x_{n}-3\right)\right)}{1-\left(x_{n}-1\right)} \\ \quad & =\frac{x_{n}\left(2-x_{n}\right)+\left(x_{n}-1\right)\left(x_{n}-3\right)-\left(x_{n}-1\right) \ln \left(x_{n}-1\right)}{2-x_{n}} \\ \quad & =\frac{2 x_{n}-x_{n}^{2}+x_{n}^{2}-4 x_{n}+3-\left(x_{n}-1\right) \ln \left(x_{n}-1\right)}{2-x_{n}} \\ \Rightarrow x_{n+1} & =\frac{3-2 x_{n}-\left(x_{n}-1\right)\left(\ln \left(x_{n}-1\right)\right.}{2-x_{n}} \end{aligned} \end{aligned}$	M1 M1 M1 A1 A1	Get equation in correct form Differentiate Use correct formula Mult by $(x-1)$ soi	

| Question | | | Answer | Marks | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{8}$ | (ii) | (b) | 1.2 | $1.152(359)$ | | B1 | For x_{2} |
| | | | 1.152359 | 1.158448 | | B1 | For enough iterates to determine 3dp |
| | | | 1.158448 | 1.158594 | Root $=1.159$ | B1 | Www |
| | | | | | | Allow 3 dp
 x_{2} must be right for
 last B1. Any error
 is likely to be self-
 correcting | |

Annotations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	
	Meaning
Other abbreviations in mark scheme	Mark for explaining
E1	Mark for correct units
U1	Mark for a correct feature on a graph
G1	Method mark dependent on a previous mark, indicated by *
M1 dep*	Correct answer only
cao	Or equivalent
oe	Rounded or truncated
rot	Seen or implied
soi	Without wrong working
www	

Subject-specific Marking Instructions for GCE Mathematics Pure strand

a. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either $\mathbf{0}$ or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded
b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.
c. The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

E
A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f. Wrong or missing units in answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
h. For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question		Answer	Marks	Guidance	
1		$\begin{aligned} & \cos \theta=\frac{1-t^{2}}{1+t^{2}} \\ & \frac{\mathrm{~d} t}{\mathrm{~d} \theta}=\frac{1}{2} \sec ^{2} \frac{1}{2} \theta=\frac{1}{2}\left(1+\tan ^{2} \frac{1}{2} \theta\right) \\ & \Rightarrow \mathrm{d} t=\frac{1+t^{2}}{2} \cdot \mathrm{~d} \theta \Rightarrow \mathrm{~d} \theta=\frac{2 \mathrm{~d} t}{1+t^{2}} \\ & \Rightarrow I=\int_{0}^{1} \frac{1}{1+\frac{1-t^{2}}{1+t^{2}}} \frac{2 \mathrm{~d} t}{1+t^{2}}=\int_{0}^{1} \frac{1+t^{2}}{1+t^{2}+1-t^{2}} \frac{2 \mathrm{~d} t}{1+t^{2}} \\ & \int_{0}^{1} \frac{2 \mathrm{~d} t}{2}=[t]_{0}^{1}=1 \end{aligned}$	M1 A1 M1 A1 A1 [5]	Using t substitution for both $\cos \theta$ and $\mathrm{d} \theta$ Subs correct Dealing with limits and attempting integration. Correct integral Answer	
		Alternative $\begin{aligned} & 1+\cos \theta=2 \cos ^{2} \frac{1}{2} \theta \\ & \Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cos \theta} \mathrm{d} \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{\cos ^{2} \frac{1}{2} \theta} \mathrm{~d} \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sec ^{2} \frac{1}{2} \theta \mathrm{~d} \theta \\ & =\frac{1}{2}\left[2 \tan \frac{1}{2} \theta\right]_{0}^{\frac{\pi}{2}}=\tan \frac{\pi}{2}-\tan 0=1 \end{aligned}$	SC3		
2	(i)	$\begin{aligned} & \cosh x=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}, \sinh x=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2} \\ & \Rightarrow \cosh ^{2} x-\sinh ^{2} x=\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}-\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)^{2} \\ & =\frac{1}{4}\left(\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}-\mathrm{e}^{2 x}+2-\mathrm{e}^{-2 x}\right)=\frac{1}{4} \cdot 4=1 \end{aligned}$	B1 M1 A1 [3]	Correct formulae Dealing with squaring correctly www All steps seen	Difference of squares can be used

Question		Answer$\begin{aligned} & \Rightarrow \cosh ^{2} x-1=5 \cosh x-7 \\ & \Rightarrow \cosh ^{2} x-5 \cosh x+6=0 \\ & \Rightarrow(\cosh x-2)(\cosh x-3)=0 \\ & \Rightarrow \cosh x=2,3 \\ & \Rightarrow x=\cosh ^{-1} 2= \pm \ln (2 \pm \sqrt{3}) \\ & \quad \text { and } x=\cosh ^{-1} 3= \pm \ln (3 \pm \sqrt{8}) \end{aligned}$	Marks M1 M1 A1 A1 A1 [5]	Guidance	
2	(ii)			Use (i) Attempt to solve quadratic Use correct ln formula Use correct ln formula	E.g. correct formula or expansion of their brackets gives 2 out of 3 terms correct Condone lack of \pm Condone lack of \pm
3	(i)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1-\left(\frac{1-x}{3+x}\right)^{2}} \times \frac{-(3+x)-(1-x)}{(3+x)^{2}} \\ & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(\frac{-4}{(3+x)^{2}-(1-x)^{2}}\right)=\frac{k}{1+x} \\ & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-1}{2(1+x)} \\ & \Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1}{2(1+x)^{2}} \end{aligned}$	B1 M1 A1 A1 A1 A1 [6]	Sight of standard diffn for $\tanh ^{-1} X$ Fn of fn and diffn of quotient Soi correct quotient (i.e. correct expression for 2nd part) Correct for y^{\prime} $2^{\text {nd }}$ diffn (NB AG)	

Question		Answer	Marks	Guidance	
3	(ii)	When $x=0, y=\tanh ^{-1} \frac{1}{3}$ or $\frac{1}{2} \ln 2$ or $\ln \sqrt{2}$ $\begin{gathered} \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{2} \\ \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1}{2} \\ \Rightarrow y=\tanh ^{-1} \frac{1}{3}+\left(-\frac{1}{2}\right) x+\left(\frac{1}{2}\right) \frac{x^{2}}{2} \\ =\tanh ^{-1} \frac{1}{3}-\frac{1}{2} x+\frac{x^{2}}{4} \end{gathered}$	B1 B1 M1 A1 [4]	For $1^{\text {st }}$ value (needs to be exact) For both Use of correct Maclaurin's series Accept 0.347	
4	(i)	$\begin{aligned} & u=\cos ^{n-1} x, \mathrm{~d} v=\cos x \mathrm{~d} x \\ & \mathrm{~d} u=-(n-1) \cos ^{n-2} x \sin x, \quad v=\sin x \\ & \Rightarrow I_{n}=\left[\cos ^{n-1} x \sin x\right]_{0}^{\frac{\pi}{2}}+(n-1) \int_{0}^{\frac{\pi}{2}} \cos ^{n-2} x \sin ^{2} x \mathrm{~d} x \\ & \quad=0+(n-1)\left(I_{n-2}-I_{n}\right) \\ & \Rightarrow n I_{n}=(n-1) I_{n-2} \Rightarrow I_{n}=\frac{n-1}{n} I_{n-2} \end{aligned}$	M1* A1 A1 *M1 A1 [5]	By parts the right way round Integral so far Correct use of $\sin ^{2} x=1-\cos ^{2} x$ Dependent on 1st M www AG	
4	(ii)	$\begin{aligned} & I_{1}=1 \\ & I_{11}=\frac{10}{11} I_{9}=\ldots=\frac{10}{11} \cdot \frac{8}{9} \cdot \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} I_{1} \\ & \Rightarrow I_{11}=\frac{3840}{10395}=\frac{256}{693} \text { oe } \end{aligned}$	B1 M1 A1 [3]	For I_{1} soi Use of (i) to give product of 5 fractions Correct fraction	

Question		Answer$\begin{aligned} & \mathrm{f}(x)=x^{3}+4 x^{2}+x-1 \\ & \mathrm{f}^{\prime}(x)=3 x^{2}+8 x+1 \\ & \Rightarrow x_{n+1}=x_{n}-\frac{x_{n}^{3}+4 x_{n}^{2}+x_{n}-1}{3 x_{n}^{2}+8 x_{n}+1} \\ & \\ & \quad=\frac{x_{n}\left(3 x_{n}^{2}+8 x_{n}+1\right)-\left(x_{n}^{3}+4 x_{n}^{2}+x_{n}-1\right)}{3 x_{n}^{2}+8 x_{n}+1} \\ & \\ & \end{aligned}$	Marks	Guidanc	
5	(i)		B1 M1 A1 [3]	Diffn Correct application of N-R formula And completed with suffices on last line NB AG	
5	(ii)	$\begin{aligned} & x_{2}=-0.72652, \\ & x_{3}=-0.72611 \\ & \Rightarrow \alpha=-0.72611 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$		NB $x_{4}=-0.726109$
5	(iii)	Sketch plus at least one tangent Converges to another root.	B1 B1 [2]	At least the first tangent and vertical line to curve Or positive root or, for e.g. " $x=0$ is the wrong side of a turning point" www	Use of formula to find this root numerically is not acceptable

Question		Answer	Marks	Guidance	
6	(i)	Width of rectangles is $\frac{3}{n}$ \Rightarrow Sum of areas of rectangles $\begin{aligned} & =\frac{3}{n} \times\left(\ln (\ln 3)+\ln \left(\ln \left(3+\frac{3}{n}\right)\right)+\ldots \ldots .\right) \\ & =\frac{3}{n} \times \sum_{r=0}^{n-1} \ln \left(\ln \left(3+\frac{3 r}{n}\right)\right) \end{aligned}$	B1 M1 A1 [3]	Statement about width Height or area of at least one rectangle Correct conclusion www $1468 \text { or }$	
6	(ii)	$=\frac{3}{n} \times \sum_{r=1}^{n} \ln \left(\ln \left(3+\frac{3 r}{n}\right)\right)$	B1 [1]		
6	(iii)	$\begin{aligned} U-L & =\frac{3}{n} \times \ln (\ln 6)-\frac{3}{n} \times \ln (\ln 3) \\ & =\frac{3}{n}(\ln (\ln 6)-\ln (\ln 3))=\frac{3}{n} \ln \left(\frac{\ln 6}{\ln 3}\right) \\ \Rightarrow n> & \frac{3}{0.001} \ln \left(\frac{\ln 6}{\ln 3}\right) \Rightarrow n>\frac{3}{0.001} \times \ln (1.6309) \\ \Rightarrow & \text { least } n=1468 \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { A1 } \\ \text { *M1 } \\ \\ \text { A1 } \\ {[4]} \end{gathered}$	Subtraction to obtain the difference of two terms Dealing with inequality to obtain n dep on first M Accept $n \geq 1468$ or $n>1467$	
7	(i)	$\begin{aligned} & x=-1 \\ & x=7 \\ & y=1 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	B1 for each -1 for any extras	

Question		Answer	Marks	Guidance	
7	(ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(x^{2}-6 x-7\right) 2 x-\left(x^{2}+1\right)(2 x-6)}{(x+1)^{2}(x-7)^{2}} \\ & =0 \text { when }\left(x^{2}-6 x-7\right) 2 x-\left(x^{2}+1\right)(2 x-6)=0 \\ & 3 x^{2}+8 x-3=0 \\ & \Rightarrow x=-3, \frac{1}{3} ; \quad y=\frac{1}{2},-\frac{1}{8} \\ & \text { i.e. }\left(-3, \frac{1}{2}\right),\left(\frac{1}{3},-\frac{1}{8}\right) \end{aligned}$	M1 A1 A1 A1 A1 [5]	Diffn using quotient rule Quadratic Both x values Both y values	Or expand as partial fractions and use fn of fn rule Or: A1 one pair A1 other pair
7	(iii)	When $y=1, x^{2}-6 x-7=x^{2}+1$ $\Rightarrow 6 x=-8 \Rightarrow x=-\frac{4}{3} \Rightarrow\left(-\frac{4}{3}, 1\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Coordinate pair needs to be seen.	
7	(iv)		B1 B1 B1 [3]	Left section, cutting asymptote and approaching $y=1$ from below Right hand section Middle section all below x-axis labelling intercept on graph or by a statement	

Question		Answer	Marks	Guidance	
8	(i)	$\begin{aligned} & \text { Substitute } r^{2}=x^{2}+y^{2}, x=r \cos \theta \\ & \Rightarrow r^{2}-r \cos \theta=r \Rightarrow r=1+\cos \theta \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	cao	
8	(ii)		B1 B1 [2]	Cardioid (General shape) Correct shape at pole, $r=2$ and symmetric	e.g. cusp clearly at pole, vertical tangent at $r=2$
8	(iii)	Line cuts curve at $(0,1)$ and $(2,0)$ $\begin{aligned} & \text { Total area }=2 \times \frac{1}{2} \times \int_{0}^{\pi}(1+\cos \theta)^{2} \mathrm{~d} \theta \\ & =\int_{0}^{\pi}\left(1+2 \cos \theta+\cos ^{2} \theta\right) \mathrm{d} \theta=\int_{0}^{\pi}\left(1+2 \cos \theta+\frac{1+\cos 2 \theta}{2}\right) \mathrm{d} \theta \\ & =\left[\frac{3}{2} \theta+2 \sin \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{\pi}=\frac{3}{2} \pi \end{aligned}$ area in 1st quadrant $=\frac{1}{2} \times \int_{0}^{\frac{1}{2} \pi}(1+\cos \theta)^{2} \mathrm{~d} \theta$ $=\frac{1}{2}\left[\frac{3}{2} \theta+2 \sin \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{\frac{1}{2} \pi}=\frac{3}{8} \pi+1$ Area under line in 1st quadrant $=1$ \Rightarrow Area enclosed by line and curve $=\frac{3}{8} \pi+1-1=\frac{3}{8} \pi$ $\Rightarrow \text { ratio }=\left(\frac{3}{2} \pi-\frac{3}{8} \pi\right): \frac{3}{8} \pi=3: 1$	B1 M1 A1 A1 M1 A1 [6]	Formula for area used Or ratio 1 : 3	Sight of expansion and attempt to integrate

Question			Answer	Marks	Guidance
1	(i)		$\begin{aligned} & (20 \sin \theta)^{2}-2 g(2.44)=0 \\ & \theta=20.2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	Use $v^{2}=u^{2}+2 a s$ vertically with $v=0$ $\theta=20.22908 \ldots$
	(ii)		$\begin{aligned} & 20 \sin \operatorname{cv}(\theta) t-1 / 2 g t^{2}=0 \\ & \text { AND range }=20 \operatorname{cv}(t) \cos \operatorname{cv}(\theta) \\ & \text { Range }=26.5 \mathrm{~m} \end{aligned}$	M1 A1 [2]	Use $s=u t+1 / 2 a t^{2}$ vertically with $s=0$ OR use $v=u+a t$ and doubles t AND horizontally with time found from vertical. ($\mathrm{t}=1.4113 \ldots \mathrm{~s}$ or $1.4093 \ldots \mathrm{~s}$ (from 20.2)) $\text { Range }=26.48541 \ldots \text { m or } 26.45387 \ldots . . \mathrm{m} \text { (from 20.2) }$
		OR	$\begin{aligned} & \frac{20^{2} \sin (2 \times \operatorname{cv}(\theta))}{g} \\ & \text { Range }=26.5 \mathrm{~m} \end{aligned}$	M1 A1 [2]	Use of range formula Range $=26.48541 \ldots \mathrm{~m}$ or $26.45387 \ldots . \mathrm{m}$ (from 20.2)
2	(i)		$\begin{aligned} & r / 6=\tan 21 \\ & r=2.3(0) \end{aligned}$	M1 A1 A1 [3]	Attempt to use trigonometry to form equation for r $r=2.30318 \ldots$
	(ii)		$\begin{aligned} & \mu<\mathrm{cv}(r) / 6 \text { or } \mu m g \cos 21<m g \sin 21 \\ & \mu<0.384 \text { or tan } 21 \end{aligned}$	M1 A1 [2]	Attempt comparison between weight comp and max friction. $\mu<0.38386 \ldots$ or $0.38333 \ldots$ (from 2.3); allow \leq
3	(i)		CoM of triangle $=1 / 3 \times \operatorname{cv}(12)$ from $B D$ $\begin{aligned} & (80+60) x_{\mathrm{G}} \\ & x_{\mathrm{G}}=7.43 \mathrm{~cm} \end{aligned}=4(80)+12(60)$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [5] } \\ & \hline \end{aligned}$	$\mathrm{OR}^{2} / 3 \mathrm{x} \operatorname{cv}(12)$ from C . CoM of triangle Table of values idea $7.42857 \ldots \text { or }^{52} / 7 \mathrm{~cm}$
	(ii)		$\begin{aligned} & \tan \theta=\left(8-x_{\mathrm{G}}\right) / 5 \\ & \tan \theta=0.5714 \ldots / 5 \\ & \theta=6.52^{\circ} \end{aligned}$	M1 A1ft A1 [3]	Using tan to find a relevant angle ft their x_{G} to target angle with the vertical 6.5198... Allow 6.5(0) from $x_{G}=7.43$

Question		Answer	Marks	Guidance
4	(i)	$\begin{aligned} & 18(10)-T(20 \sin \theta)+3(6)=0 \\ & T=16.5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Moments about P Need a value for $\sin \theta$ or θ Exact
	(ii)	$X=T \cos \theta$ $\begin{aligned} & Y+T \sin \theta-18-3=0 \\ & R=\sqrt{ }\left(13.2^{2}+11.1^{2}\right)=17.2 \mathrm{~N} \end{aligned}$	$\begin{gathered} \text { B1ft } \\ \text { M1 } \\ \text { A1ft } \\ \text { A1 } \\ \text { [4] } \\ \hline \end{gathered}$	ft candidates value of T. Resolve horizontally ($X=13.2 \mathrm{~N}$) or moments; Need a value for $\cos \theta$ or θ Resolve vertically or moments ft candidates value of $T . Y=11.1 \mathrm{~N}$; Need a value for $\sin \theta$ or θ $R=17.2467 \ldots$
	(iii)	$\begin{aligned} & \mu=\operatorname{cv}(\|Y\|) / \operatorname{cv}(\|X\|)=11.1 / 13.2 \\ & \mu=0.841 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	$\begin{aligned} & \text { Use of } F r=\mu R \\ & \mu=0.8409 \ldots \text {; } \text { allow }^{37} / 44 \end{aligned}$
5	(i)	$\begin{aligned} & \text { Driving Force }=10000 / 20(=500) \\ & \operatorname{cv}(10000 / 20)-1300+800 g \sin \alpha=0 \\ & \sin \alpha=5 / 49 \end{aligned}$	B1 M1 A1 A1 [4]	Attempt at N2L with 3 terms AG at least one more line of correct working (at least e.g. $-800+800 g \sin \alpha=0$); allow verification (e.g. $500-1300+800=0$)
	(ii)	$\begin{aligned} & 800(22.1) g \sin \alpha \\ & 800(22.1) g \sin \alpha+1300(22.1)+1 / 2(800)\left(8^{2}\right) \\ & t=3.6(0) \mathrm{s} \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { [5] } \\ \hline \end{gathered}$	Work done against weight; Need a value for $\sin \alpha$ or α Total work done, 3 terms needed Need a value for $\sin \alpha$ or α; (72010 J) Time = work done(from at least one correct energy term)/power 'Exact' is 3.6005
6	(i)	$\begin{aligned} & (2 m)(4)-(3 m)(2)=2 m v_{A}+3 m v_{B} \\ & \left(v_{B}-v_{A}\right) /(4--2)=0.4 \end{aligned}$ Speed $A=1.04 \mathrm{~m} \mathrm{~s}^{-1}$, Speed $B=1.36 \mathrm{~m} \mathrm{~s}^{-1}$	*M1 A1 *M1 A1 Dep**M1 A1 $[6]$	Attempt at use of conservation of momentum Attempt at use of coefficient of restitution Solving for v_{A} and v_{B} Final answers must be positive

Question			Answer	Marks	Guidance
	(iv)		$\begin{aligned} & 2 T \sin \theta=0.4(0.854 \sin \theta)\left(3.46^{2}\right) \\ & T=2.04 \mathrm{~N} \\ & 2 T \cos \theta=0.4 g \\ & \theta=16.5^{\circ} \text { or } 16.6^{\circ} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \\ & \hline \end{aligned}$	θ angle with vertical. Resolve horizontally. Allow with T only. $r=$ component of 0.854 $T=2.04474 \ldots \mathrm{~N}$ using $A P=0.854 \mathrm{~m}, T=2.04367 \ldots \mathrm{~N}$ using exact $A P$ θ angle with vertical. Resolve vertically. Allow with T only $\theta=16.55377 \ldots{ }^{\circ}$ using $A P=0.854 \mathrm{~m}, \theta=16.4526 \ldots{ }^{\circ}$ using exact $A P$ SC M1A0M1A1 for use of T instead of 2T throughout
8	(i)		$\begin{aligned} & \hline v_{x}=12 \cos 20 \\ & 8=12 t \cos 20 \\ & \\ & v_{y}=12 \sin 20-g \operatorname{cv}(t) \\ & \tan \theta=v_{y} / v_{x} \\ & 14.2^{\circ} \text { below horizontal } \end{aligned}$	*B1 B1 *M1 A1 Dep**M1 A1 $[6]$	11.27631..... Using suvat to find expression in t only. ($t=0.70945 \ldots$...) Attempt at use of $v=u+a t$ $-2.84838 \ldots \ldots$ Use trig to find a relevant angle 14.1763... (75.8° downward vertical)
	(ii)		$\begin{aligned} & 8=V t \cos 20 \\ & 1.5=V t \sin 20-g t^{2} / 2 \end{aligned}$ Eliminate t Attempt to solve a quadratic for V $V=15.9$	$\begin{gathered} \text { B1 } \\ \text { *M1 } \\ \text { A1 } \\ \text { dep*M1 } \\ \text { dep*M1 } \\ \text { A1 } \\ {[6]} \\ \hline \end{gathered}$	Attempt at use of $s=u t+1 / 2 a t^{2}$ OR Eliminate V and solve for t AND Sub value for t and solve for V $V=15.8606 \ldots$
		OR	$y=x \tan \theta-g x^{2} \sec ^{2} \theta / 2 u^{2}$ Substitute values for y, x, θ $1.5=8 \tan 20-g 8^{2} \sec ^{2} 20 / 2 V^{2}$ Attempt to solve a quadratic for V $V=15.9$	$\begin{gathered} \text { *B1 } \\ \text { dep*M1 } \\ \text { A1 } \\ \text { dep*M2 } \\ \text { A1 } \\ \text { [6] } \\ \hline \end{gathered}$	Use equation of trajectory SC M1 for solving for V^{2} $V=15.8606 \ldots$

